Dust spreading in debris discs: do small grains cling on to their birth environment?

Nicole Pawellek, Attila Moór, Ilaria Pascucci, Alexander V. Krivov

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Debris discs are dusty belts of planetesimals around main-sequence stars, similar to the asteroid and Kuiper belts in our Solar system. The planetesimals cannot be observed directly, yet they produce detectable dust in mutual collisions. Observing the dust, we can try to infer properties of invisible planetesimals. Here, we address the question of what is the best way to measure the location of outer planetesimal belts that encompass extrasolar planetary systems. A standard method is using resolved images at millimetre wavelengths, which reveal dust grains with sizes comparable to the observational wavelength. Smaller grains seen in the infrared (IR) are subject to several non-gravitational forces that drag them away from their birth rings, and so may not closely trace the parent bodies. In this study, we examine whether imaging of debris discs at shorter wavelengths might enable determining the spatial location of the exo-Kuiper belts with sufficient accuracy. We find that around M-type stars the dust best visible in the mid-IR is efficiently displaced inwards from their birth location by stellar winds, causing the discs to look more compact in mid-IR images than they actually are. However, around earlier-type stars where the majority of debris discs is found, discs are still the brightest at the birth ring location in the mid-IR regime. Thus, sensitive IR facilities with good angular resolution, such as MIRI on James Webb Space Telescope, will enable tracing exo-Kuiper belts in nearby debris disc systems.

Original languageEnglish (US)
Pages (from-to)5874-5888
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Volume487
Issue number4
DOIs
StatePublished - Jun 25 2019

Keywords

  • circumstellar matter
  • infrared: stars

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Dust spreading in debris discs: do small grains cling on to their birth environment?'. Together they form a unique fingerprint.

Cite this