TY - JOUR
T1 - Dual roles of immunoregulatory cytokine TGF-β in the pathogenesis of autoimmunity-mediated organ damage
AU - Saxena, Vijay
AU - Lienesch, Douglas W.
AU - Zhou, Min
AU - Bommireddy, Ramireddy
AU - Azhar, Mohamad
AU - Doetschman, Thomas
AU - Singh, Ram Raj
PY - 2008/2/1
Y1 - 2008/2/1
N2 - Ample evidence suggests a role of TGF-β in preventing autoimmunity. Multiorgan inflammatory disease, spontaneous activation of self-reactive T cells, and autoantibody production are hallmarks of autoimmune diseases, such as lupus. These features are reminiscent of the immunopathology manifest in TGF-β1-deficient mice. In this study, we show that lupus-prone (New Zealand Black and White)F1 mice have reduced expression of TGF-β1 in lymphoid tissues, and TGF-β1 or TGF-β1-producing T cells suppress autoantibody production. In contrast, the expression of TGF-β1 protein and mRNA and TGF-β signaling proteins (TGF-β receptor type II and phosphorylated SMAD3) increases in the target organs, i.e., kidneys, of these mice as they age and develop progressive organ damage. In fact, the levels of TGF-β1 in kidney tissue and urine correlate with the extent of chronic lesions that represent local tissue fibrosis. In vivo TGF-β blockade by treatment of these mice with an anti-TGF-β Ab selectively inhibits chronic fibrotic lesions without affecting autoantibody production and the inflammatory component of tissue injury. Thus, TGF-β plays a dual, seemingly paradoxical, role in the development of organ damage in multiorgan autoimmune diseases. According to our working model, reduced TGF-β in immune cells predisposes to immune dysregulation and autoantibody production, which causes tissue inflammation that triggers the production of anti-inflammatory cytokines such as TGF-β in target organs to counter inflammation. Enhanced TGF-β in target organs, in turn, can lead to dysregulated tissue repair, progressive fibrogenesis, and eventual end-organ damage.
AB - Ample evidence suggests a role of TGF-β in preventing autoimmunity. Multiorgan inflammatory disease, spontaneous activation of self-reactive T cells, and autoantibody production are hallmarks of autoimmune diseases, such as lupus. These features are reminiscent of the immunopathology manifest in TGF-β1-deficient mice. In this study, we show that lupus-prone (New Zealand Black and White)F1 mice have reduced expression of TGF-β1 in lymphoid tissues, and TGF-β1 or TGF-β1-producing T cells suppress autoantibody production. In contrast, the expression of TGF-β1 protein and mRNA and TGF-β signaling proteins (TGF-β receptor type II and phosphorylated SMAD3) increases in the target organs, i.e., kidneys, of these mice as they age and develop progressive organ damage. In fact, the levels of TGF-β1 in kidney tissue and urine correlate with the extent of chronic lesions that represent local tissue fibrosis. In vivo TGF-β blockade by treatment of these mice with an anti-TGF-β Ab selectively inhibits chronic fibrotic lesions without affecting autoantibody production and the inflammatory component of tissue injury. Thus, TGF-β plays a dual, seemingly paradoxical, role in the development of organ damage in multiorgan autoimmune diseases. According to our working model, reduced TGF-β in immune cells predisposes to immune dysregulation and autoantibody production, which causes tissue inflammation that triggers the production of anti-inflammatory cytokines such as TGF-β in target organs to counter inflammation. Enhanced TGF-β in target organs, in turn, can lead to dysregulated tissue repair, progressive fibrogenesis, and eventual end-organ damage.
UR - http://www.scopus.com/inward/record.url?scp=40749089639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40749089639&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.180.3.1903
DO - 10.4049/jimmunol.180.3.1903
M3 - Article
C2 - 18209088
AN - SCOPUS:40749089639
SN - 0022-1767
VL - 180
SP - 1903
EP - 1912
JO - Journal of Immunology
JF - Journal of Immunology
IS - 3
ER -