TY - JOUR
T1 - DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas
AU - Bellail, Anita C.
AU - Tse, Margaret C.L.
AU - Song, Jin H.
AU - Phuphanich, Surasak
AU - Olson, Jeffrey J.
AU - Sun, Shi Yong
AU - Hao, Chunhai
PY - 2010/6
Y1 - 2010/6
N2 - To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas-associated death domain (FADD) and caspase-8 for the assembly of death-inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase-8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL-sensitive glioblastoma cells. In TRAIL-resistant cells, however, DR5-mediated DISC was modified by receptor-interacting protein (RIP), cellular FADD-like interleukin-1β-converting enzyme inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes or in astrocyte-15 (PED/PEA-15). This DISC modification occurred in the non-raft fractions of the plasma membrane and resulted in the inhibition of caspase-8 cleavage and activation of nuclear factor-κB (NF-κB). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of κB (I-κB), eliminated TRAIL-induced NF-κB activity but not TRAIL resistance. In contrast, however, targeting of RIP, c-FLIP or PED/PEA-15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non-rafts to lipid rafts and eliminated the inhibition of caspase-8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c-FLIP and PED/PEA-15 is the most upstream event in TRAIL resistance in glioblastomas.
AB - To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas-associated death domain (FADD) and caspase-8 for the assembly of death-inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase-8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL-sensitive glioblastoma cells. In TRAIL-resistant cells, however, DR5-mediated DISC was modified by receptor-interacting protein (RIP), cellular FADD-like interleukin-1β-converting enzyme inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes or in astrocyte-15 (PED/PEA-15). This DISC modification occurred in the non-raft fractions of the plasma membrane and resulted in the inhibition of caspase-8 cleavage and activation of nuclear factor-κB (NF-κB). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of κB (I-κB), eliminated TRAIL-induced NF-κB activity but not TRAIL resistance. In contrast, however, targeting of RIP, c-FLIP or PED/PEA-15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non-rafts to lipid rafts and eliminated the inhibition of caspase-8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c-FLIP and PED/PEA-15 is the most upstream event in TRAIL resistance in glioblastomas.
KW - Apoptosis
KW - Caspase-8
KW - DR5
KW - Glioblastoma
KW - TRAIL
UR - http://www.scopus.com/inward/record.url?scp=77955165505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955165505&partnerID=8YFLogxK
U2 - 10.1111/j.1582-4934.2009.00777.x
DO - 10.1111/j.1582-4934.2009.00777.x
M3 - Article
C2 - 19432816
AN - SCOPUS:77955165505
SN - 1582-1838
VL - 14
SP - 1303
EP - 1317
JO - Journal of Cellular and Molecular Medicine
JF - Journal of Cellular and Molecular Medicine
IS - 6 A
ER -