TY - JOUR
T1 - Double-power-law Feature of Energetic Particles Accelerated at Coronal Shocks
AU - Yu, Feiyu
AU - Kong, Xiangliang
AU - Guo, Fan
AU - Liu, Wenlong
AU - Jiang, Zelong
AU - Chen, Yao
AU - Giacalone, Joe
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society..
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Recent observations have shown that in many large solar energetic particle (SEP) events the event-integrated differential spectra resemble double power laws. We perform numerical modeling of particle acceleration at coronal shocks propagating through a streamer-like magnetic field by solving the Parker transport equation, including protons and heavier ions. We find that for all ion species the energy spectra integrated over the simulation domain can be described by a double power law, and the break energy depends on the ion charge-to-mass ratio as E B ∼ (Q/A) α , with α varying from 0.16 to 1.2 by considering different turbulence spectral indices. We suggest that the double-power-law distribution may emerge as a result of the superposition of energetic particles from different source regions where the acceleration rates differ significantly due to particle diffusion. The diffusion and mixing of energetic particles could also provide an explanation for the increase of Fe/O at high energies as observed in some SEP events. Although further mixing processes may occur, our simulations indicate that either a power-law break or rollover can occur near the Sun and predict that the spectral forms vary significantly along the shock front, which may be examined by upcoming near-Sun SEP measurements from the Parker Solar Probe and Solar Orbiter.
AB - Recent observations have shown that in many large solar energetic particle (SEP) events the event-integrated differential spectra resemble double power laws. We perform numerical modeling of particle acceleration at coronal shocks propagating through a streamer-like magnetic field by solving the Parker transport equation, including protons and heavier ions. We find that for all ion species the energy spectra integrated over the simulation domain can be described by a double power law, and the break energy depends on the ion charge-to-mass ratio as E B ∼ (Q/A) α , with α varying from 0.16 to 1.2 by considering different turbulence spectral indices. We suggest that the double-power-law distribution may emerge as a result of the superposition of energetic particles from different source regions where the acceleration rates differ significantly due to particle diffusion. The diffusion and mixing of energetic particles could also provide an explanation for the increase of Fe/O at high energies as observed in some SEP events. Although further mixing processes may occur, our simulations indicate that either a power-law break or rollover can occur near the Sun and predict that the spectral forms vary significantly along the shock front, which may be examined by upcoming near-Sun SEP measurements from the Parker Solar Probe and Solar Orbiter.
UR - http://www.scopus.com/inward/record.url?scp=85124601400&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124601400&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac4cb3
DO - 10.3847/2041-8213/ac4cb3
M3 - Article
AN - SCOPUS:85124601400
SN - 2041-8205
VL - 925
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L13
ER -