DNA Origami-Platelet Adducts: Nanoconstruct Binding without Platelet Activation

Yana Roka-Moiia, Vismaya Walawalkar, Ying Liu, Joseph E. Italiano, Marvin J. Slepian, Rebecca E. Taylor

Research output: Contribution to journalArticlepeer-review

Abstract

Objective. Platelets are small, mechanosensitive blood cells responsible for maintaining vascular integrity and activatable on demand to limit bleeding and facilitate thrombosis. While circulating in the blood, platelets are exposed to a range of mechanical and chemical stimuli, with the platelet membrane being the primary interface and transducer of outside-in signaling. Sensing and modulating these interface signals would be useful to study mechanochemical interactions; yet, to date, no methods have been defined to attach adducts for sensor fabrication to platelets without triggering platelet activation. We hypothesized that DNA origami, and methods for its attachment, could be optimized to enable nonactivating instrumentation of the platelet membrane. Approach and Results. We designed and fabricated multivalent DNA origami nanotile constructs to investigate nanotile hybridization to membrane-embedded single-stranded DNA-tetraethylene glycol cholesteryl linkers. Two hybridization protocols were developed and validated (Methods I and II) for rendering high-density binding of DNA origami nanotiles to human platelets. Using quantitative flow cytometry, we showed that DNA origami binding efficacy was significantly improved when the number of binding overhangs was increased from two to six. However, no additional binding benefit was observed when increasing the number of nanotile overhangs further to 12. Using flow cytometry and transmission electron microscopy, we verified that hybridization with DNA origami constructs did not cause alterations in the platelet morphology, activation, aggregation, or generation of platelet-derived microparticles. Conclusions. Herein, we demonstrate that platelets can be successfully instrumented with DNA origami constructs with no or minimal effect on the platelet morphology and function. Our protocol allows for efficient high-density binding of DNA origami to platelets using low quantities of the DNA material to label a large number of platelets in a timely manner. Nonactivating platelet-nanotile adducts afford a path for advancing the development of DNA origami nanoconstructs for cell-adherent mechanosensing and therapeutic agent delivery.

Original languageEnglish (US)
Pages (from-to)1295-1310
Number of pages16
JournalBioconjugate Chemistry
Volume33
Issue number7
DOIs
StatePublished - Jul 20 2022

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'DNA Origami-Platelet Adducts: Nanoconstruct Binding without Platelet Activation'. Together they form a unique fingerprint.

Cite this