Abstract
Premise of the Study: Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. Methods: We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). Key Results: Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. Conclusions: Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change.
Original language | English (US) |
---|---|
Pages (from-to) | 687-699 |
Number of pages | 13 |
Journal | American journal of botany |
Volume | 105 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2018 |
Keywords
- Agaricomycetes
- Ascomycota
- Cenococcum
- Pseudotsuga
- Quercus
- climate
- diversity
- phosphate
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Genetics
- Plant Science