Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta

Uwe Homberg, Sally G. Hoskins, John G. Hildebrand

Research output: Contribution to journalArticlepeer-review

50 Scopus citations


We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the deutocerebrum of the brain of the sphinx moth Manduca sexta. To distinguish between extra-and intracellular pools of the enzyme, some brains were treated prior to histochemical staining with echothiophate, an irreversible AChE inhibitor which penetrates cell membranes very slowly and, therefore, inhibits only extracellular AChE. In the antennal nerve, fascicles of presumably mechanosensory fibers show echothiophateinsensitive AChE activity. They bypass the antennal lobe and project to the antennal mechanosensory and motor center of the deutocerebrum. In the antennal lobe, fibers in the coarse neuropil, cell bodies in the lateral cell group, and all glomeruli exhibit AChE activity. In most ordinary glomeruli, echothiophate-sensitive AChE activity is concentrated in the outer cap regions, corresponding to the terminal arborizations of olfactory afferents. A previously unrecognized glomerulus in the ventro-median antennal lobe shows uniform and more intense AChE-specific staining that the other glomeruli. No AChE activity appeared to be associated with malespecific pheromone-sensitive afferents in the macro-glomerular complex. About 67 interneurons with somata in the lateral cell group of the antennal lobe show echo-thiophate-insensitive AChE activity. These neurous seem to be members of two types of antennal-lobe projection neurons with fibers passing through the outer-antenno-cerebral tract to the protocerebrum. AChE-stained arborizations of these neurons appear to invade all glomeruli, including three distinguishable subunits of the male-specific macroglomerular complex. In echothiophate-treated animals, the projections of one of these types of fiber form large terminals in the lateral horn of protocerebrum, which partly protrude into the adjacent glial cell layer. The results suggest that extracellularly accessible AChE is associated with ordinary olfactory receptor terminals but apparently not with pheromone-sensitive afferents. Intracellular AChE appears to be present in antennal mechanosensory fibers and in two types of olfactory projection neurons of the antennal lobe. The study provides further evidence for cholinergic neurotransmission of most antennal afferents. The AChE-containing interneurons might be cholinergic as well or use the enzyme for functions unrelated to hydrolysis of acetylcholine.

Original languageEnglish (US)
Pages (from-to)249-259
Number of pages11
JournalCell & Tissue Research
Issue number2
StatePublished - Feb 1995


  • Acetylcholinesterase
  • Antennal lobe
  • Brain, invertebrate
  • Deutocerebrum
  • Manduca sexta (Insecta)

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Histology
  • Cell Biology


Dive into the research topics of 'Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta'. Together they form a unique fingerprint.

Cite this