Distinction between Nitrosating Mechanisms within Human Cells and Aqueous Solution

Michael Graham Espey, Katrina M. Miranda, Douglas D. Thomas, David A. Wink

Research output: Contribution to journalArticlepeer-review

139 Scopus citations


The quintessential nitrosating species produced during NO autoxidation is N2O3. Nitrosation of amine, thiol, and hydroxyl residues can modulate critical cell functions. The biological mechanisms that control reactivity of nitrogen oxide species formed during autoxidation of nano- to micromolar levels of NO were examined using the synthetic donor NaEt 2NN(O)NO (DEA/NO), human tumor cells, and 4,5-diaminofluorescein (DAF). Both the disappearance of NO and formation of nitrosated product from DAF in aerobic aqueous buffer followed second order processes; however, consumption of NO and nitrosation within intact cells were exponential. An optimal ratio of DEA/NO and 2-phenyl-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (PTIO) was used to form N2O3 through the intermediacy of NO2. This route was found to be most reflective of the nitrosative mechanism within intact cells and was distinct from the process that occurred during autoxidation of NO in aqueous media. Manipulation of the endogenous scavengers ascorbate and glutathione indicated that the location, affinity, and concentration of these substances were key determinants in dictating nitrosative susceptibility of molecular targets. Taken together, these findings suggest that the functional effects of nitrosation may be organized to occur within discrete domains or compartments. Nitrosative stress may develop when scavengers are depleted and this architecture becomes compromised. Although NO2 was not a component of aqueous NO autoxidation, the results suggest that the intermediacy of this species may be a significant factor in the advent of either nitrosation or oxidation chemistry in biological systems.

Original languageEnglish (US)
Pages (from-to)30085-30091
Number of pages7
JournalJournal of Biological Chemistry
Issue number32
StatePublished - Aug 10 2001

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Distinction between Nitrosating Mechanisms within Human Cells and Aqueous Solution'. Together they form a unique fingerprint.

Cite this