TY - JOUR
T1 - Dissolution of nonuniformly distributed immiscible liquid
T2 - Intermediate-scale experiments and mathematical modeling
AU - Brusseau, Mark L.
AU - Zhang, Zhihui
AU - Nelson, Nicole T.
AU - Cain, R. Brent
AU - Tick, Geoffrey R.
AU - Oostrom, Mart
PY - 2002/3/1
Y1 - 2002/3/1
N2 - The purpose of this work is to examine the effect of nonuniform distributions of immiscible organic liquid on dissolution behavior, with a specific focus on the condition dependency of dissolution (i.e., mass transfer) rate coefficients associated with applying mathematical models of differing complexities to measured data. Dissolution experiments were conducted using intermediate-scale flow cells packed with sand in which well-characterized zones of residual trichloroethene (TCE) and 1,2-dichloroethane (DCA) saturation were emplaced. A dual-energy gamma radiation system was used for in-situ measurement of NAPL saturation. Aqueous concentrations of TCE and DCA measured in the flow-cell effluent were significantly less than solubility, due primarily to dilution associated with the nonuniform immiscible-liquid distribution and bypass flow effects associated with physical heterogeneity. A quantitative analysis of flow and transport was conducted using a three-dimensional mathematical model wherein immiscible-liquid distribution, permeability variability, and sampling effects were explicitly considered. Independent values for the initial dissolution rate coefficients were obtained from dissolution experiments conducted using homogeneously packed columns. The independent predictions obtained from the model provided good representations of NAPL dissolution behavior and of total TCE/DCA mass removed, signifying model robustness. This indicates that for the complex three-dimensional model, explicit consideration of the larger scale factors that influenced immiscible-liquid dissolution in the flow cells allowed the use of a dissolution rate coefficient that represents only local-scale mass transfer processes. Conversely, the use of simpler models that did not explicitly consider the nonuniform immiscible-liquid distribution required the use of dissolution rate coefficients that are ∼3 orders of magnitude smaller than the values obtained from the columnexperiments. The rate coefficients associate with the simpler models represent composite or lumped coefficients that incorporate the effects of the larger scale dissolution precesses associated with the nonuniform immiscible-liquid distribution, which are not explicitly represented in the simpler models, as well as local-scale mass transfer. These results demonstrate that the local-scale dissolution rate coefficients, such as those obtained from column experiments, can be used in models to successfully predict dissolution and transport of immiscible-liquid constituents at larger scales when the larger scale factors influencing dissolution behavior are explicitly accounted for in the model.
AB - The purpose of this work is to examine the effect of nonuniform distributions of immiscible organic liquid on dissolution behavior, with a specific focus on the condition dependency of dissolution (i.e., mass transfer) rate coefficients associated with applying mathematical models of differing complexities to measured data. Dissolution experiments were conducted using intermediate-scale flow cells packed with sand in which well-characterized zones of residual trichloroethene (TCE) and 1,2-dichloroethane (DCA) saturation were emplaced. A dual-energy gamma radiation system was used for in-situ measurement of NAPL saturation. Aqueous concentrations of TCE and DCA measured in the flow-cell effluent were significantly less than solubility, due primarily to dilution associated with the nonuniform immiscible-liquid distribution and bypass flow effects associated with physical heterogeneity. A quantitative analysis of flow and transport was conducted using a three-dimensional mathematical model wherein immiscible-liquid distribution, permeability variability, and sampling effects were explicitly considered. Independent values for the initial dissolution rate coefficients were obtained from dissolution experiments conducted using homogeneously packed columns. The independent predictions obtained from the model provided good representations of NAPL dissolution behavior and of total TCE/DCA mass removed, signifying model robustness. This indicates that for the complex three-dimensional model, explicit consideration of the larger scale factors that influenced immiscible-liquid dissolution in the flow cells allowed the use of a dissolution rate coefficient that represents only local-scale mass transfer processes. Conversely, the use of simpler models that did not explicitly consider the nonuniform immiscible-liquid distribution required the use of dissolution rate coefficients that are ∼3 orders of magnitude smaller than the values obtained from the columnexperiments. The rate coefficients associate with the simpler models represent composite or lumped coefficients that incorporate the effects of the larger scale dissolution precesses associated with the nonuniform immiscible-liquid distribution, which are not explicitly represented in the simpler models, as well as local-scale mass transfer. These results demonstrate that the local-scale dissolution rate coefficients, such as those obtained from column experiments, can be used in models to successfully predict dissolution and transport of immiscible-liquid constituents at larger scales when the larger scale factors influencing dissolution behavior are explicitly accounted for in the model.
UR - http://www.scopus.com/inward/record.url?scp=0036489110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036489110&partnerID=8YFLogxK
U2 - 10.1021/es010609f
DO - 10.1021/es010609f
M3 - Article
C2 - 11917988
AN - SCOPUS:0036489110
SN - 0013-936X
VL - 36
SP - 1033
EP - 1041
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 5
ER -