Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil

Katerina M. Dontsova, Judith C. Pennington, Charolett Hayes, Jiri Šimunek, Clint W. Williford

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Live-fire training exercises can result in particulate propellant contamination on military training ranges and can potentially contaminate ground water. This study was conducted to evaluate dissolution of the 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) from the propellant formulation, M1 (87.6% nitrocellulose, 7.3% 2,4-DNT, 0.57% 2,6-DNT, 1.06% diphenylamine, 3.48% dibutyl phthalate) and their subsequent transport in soil. Batch dissolution studies were followed by saturated column transport experiments. Neat, dissolved 2,4-DNT, and M1 in solid and dissolved forms were used as influent to columns filled with Plymouth loamy sand (mesic, coated Typic Quartzipsamments) from Camp Edwards, MA. Dissolution rates and other fate and transport parameters were determined using the HYDRUS-1D code. M1 dissolution was limited by DNT diffusion from the interior of the pellet, resulting in an exponential decrease in dissolution rate with time. The HYDRUS-1D model accurately described release and transport of 2,4- and 2,6-DNT from M1 propellant. Dissolution rates for M1 in the stirred reactor and column studies were similar, indicating that batch dissolution rates are potentially useful to represent field conditions.

Original languageEnglish (US)
Pages (from-to)597-603
Number of pages7
JournalChemosphere
Volume77
Issue number4
DOIs
StatePublished - Oct 2009
Externally publishedYes

Keywords

  • 2,4-Dinitrotoluene
  • 2,6-Dinitrotoluene
  • Column studies
  • HYDRUS-1D
  • Propellant

ASJC Scopus subject areas

  • General Chemistry
  • Public Health, Environmental and Occupational Health
  • Pollution
  • Health, Toxicology and Mutagenesis
  • Environmental Engineering
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil'. Together they form a unique fingerprint.

Cite this