TY - JOUR
T1 - Dissociation dynamics of resonantly coupled Bose-Fermi mixtures in an optical lattice
AU - Miyakawa, Takahiko
AU - Meystre, Pierre
PY - 2006
Y1 - 2006
N2 - We consider the photodissociation of ground-state bosonic molecules trapped in an optical lattice potential into a two-component gas of fermionic atoms. The system is assumed to be described by a single-band resonantly coupled Bose-Fermi Hubbard model. We show that in the strong fermion-fermion interaction limit the dissociation dynamics is governed by a spin-boson lattice Hamiltonian. In the framework of a mean-field analysis based on a generalized Gutzwiller ansatz, we then examine the crossover of the dissociation from a regime of independent single-site dynamics to a regime of cooperative dynamics as the molecular tunneling increases. We also show that in the limits of weak and strong intersite tunneling the mean-field solutions agree well with the results from the quantum optical Jaynes-Cummings and Tavis-Cummings models, respectively. Finally, we identify two types of self-trapping transitions, a coherent and an incoherent one, depending on the ratio of the repulsive molecule-molecule interaction strength to molecular tunneling.
AB - We consider the photodissociation of ground-state bosonic molecules trapped in an optical lattice potential into a two-component gas of fermionic atoms. The system is assumed to be described by a single-band resonantly coupled Bose-Fermi Hubbard model. We show that in the strong fermion-fermion interaction limit the dissociation dynamics is governed by a spin-boson lattice Hamiltonian. In the framework of a mean-field analysis based on a generalized Gutzwiller ansatz, we then examine the crossover of the dissociation from a regime of independent single-site dynamics to a regime of cooperative dynamics as the molecular tunneling increases. We also show that in the limits of weak and strong intersite tunneling the mean-field solutions agree well with the results from the quantum optical Jaynes-Cummings and Tavis-Cummings models, respectively. Finally, we identify two types of self-trapping transitions, a coherent and an incoherent one, depending on the ratio of the repulsive molecule-molecule interaction strength to molecular tunneling.
UR - http://www.scopus.com/inward/record.url?scp=33750321830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750321830&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.74.043615
DO - 10.1103/PhysRevA.74.043615
M3 - Article
AN - SCOPUS:33750321830
SN - 1050-2947
VL - 74
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 4
M1 - 043615
ER -