Abstract
We present imaging observations at the 1.3mm wavelength of ClassI protostars in the Taurus star-forming region, obtained with the CARMA interferometer. Of an initial sample of 10 objects, we detected and imaged millimeter wavelength emission from 9. One of the nine is resolved into two sources and detailed analysis of this binary protostellar system is deferred to a future paper. For the remaining eight objects, we use the CARMA data to determine the basic morphology of the millimeter emission. Combining the millimeter data with 0.9 μm images of scattered light, Spitzer Infrared Spectrograph spectra, and broadband spectral energy distributions (all from the literature), we attempt to determine the structure of the circumstellar material. We consider models including both circumstellar disks and envelopes, and constrain the masses (and other structural parameters) of each of these components. We show that the disk masses in our sample span a range from ≲ 0.01 to ≳ 0.1 M. The disk masses for our sample are significantly higher than for samples of more evolved ClassII objects. Thus, ClassI disk masses probably provide a more accurate estimate of the initial mass budget for star and planet formation. However, the disk masses determined here are lower than required by theories of giant planet formation. The masses also appear too low for gravitational instability, which could lead to high mass accretion rates. Even in these ClassI disks, substantial particle growth may have hidden much of the disk mass in hard-to-see larger bodies.
Original language | English (US) |
---|---|
Article number | 23 |
Journal | Astrophysical Journal |
Volume | 755 |
Issue number | 1 |
DOIs | |
State | Published - Aug 10 2012 |
Keywords
- Circumstellar matter
- stars: formation
- techniques: high angular resolution
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science