TY - GEN
T1 - Directly measuring the adhesive and elastic properties of bacteria using a surface force apparatus
T2 - 2006 MRS Spring Meeting
AU - Heo, Cheol Ho
AU - Maier, Raina M.
AU - Curry, Joan E.
PY - 2006
Y1 - 2006
N2 - Bacterial adhesion is the first step in biofilm formation which impacts numerous environmental, industrial and medical processes. Examples of undesirable consequences of biofilm formation include metal rust, sewage sludge and bacteria-related diseases. Desirable consequences are biofiltration and bioremediation. Bacteria are resilient and can survive in harsh environments. A severe stress is desiccation since dehydration can damage DNA and change the properties of proteins. Some bacteria protect against dehydration by accumulating sugars such as sucrose and trehalose while others undergo a transformation from an active to a dormant state. Evaporative deposition of bacteria on a surface shows that some bacteria aggregate to form two dimensional patterns which may be important for nutrient sharing and survival in dry conditions'. Since bacteria are increasingly being employed as components in biosensors and biofilm reactors, it is important to understand the material properties of bacteria in dry conditions for these applications. For a decade, Atomic Force Microscopy (AFM) has been the primary tool used to study the adhesion and elastic properties of individual bacteria. In this work we show it is possible to use a Surface Forces Apparatus (SFA) to measure elastic and adhesive properties of small collections of surface bound bacteria. The measurements are conducted with incomplete, patterned bacterial films and we have developed a protocol to image the contact area with AFM after the experiment. Using the SFA, we measured the force profile between a Pseudomonas aeruginosa PAO1 film and a bare mica surface. P. aeruginosa PAO1 is a . ubiquitous gram-negative soil bacterium and is also an opportunistic pathogen. We repeated the measurement in the same contact position for six days to determine the effect of desiccation on the film material properties.
AB - Bacterial adhesion is the first step in biofilm formation which impacts numerous environmental, industrial and medical processes. Examples of undesirable consequences of biofilm formation include metal rust, sewage sludge and bacteria-related diseases. Desirable consequences are biofiltration and bioremediation. Bacteria are resilient and can survive in harsh environments. A severe stress is desiccation since dehydration can damage DNA and change the properties of proteins. Some bacteria protect against dehydration by accumulating sugars such as sucrose and trehalose while others undergo a transformation from an active to a dormant state. Evaporative deposition of bacteria on a surface shows that some bacteria aggregate to form two dimensional patterns which may be important for nutrient sharing and survival in dry conditions'. Since bacteria are increasingly being employed as components in biosensors and biofilm reactors, it is important to understand the material properties of bacteria in dry conditions for these applications. For a decade, Atomic Force Microscopy (AFM) has been the primary tool used to study the adhesion and elastic properties of individual bacteria. In this work we show it is possible to use a Surface Forces Apparatus (SFA) to measure elastic and adhesive properties of small collections of surface bound bacteria. The measurements are conducted with incomplete, patterned bacterial films and we have developed a protocol to image the contact area with AFM after the experiment. Using the SFA, we measured the force profile between a Pseudomonas aeruginosa PAO1 film and a bare mica surface. P. aeruginosa PAO1 is a . ubiquitous gram-negative soil bacterium and is also an opportunistic pathogen. We repeated the measurement in the same contact position for six days to determine the effect of desiccation on the film material properties.
UR - http://www.scopus.com/inward/record.url?scp=33947625485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947625485&partnerID=8YFLogxK
U2 - 10.1557/proc-0925-bb01-07
DO - 10.1557/proc-0925-bb01-07
M3 - Conference contribution
AN - SCOPUS:33947625485
SN - 1558998829
SN - 9781558998827
T3 - Materials Research Society Symposium Proceedings
SP - 1
EP - 6
BT - Mechanotransduction and Engineered Cell-Surface Interactions
PB - Materials Research Society
Y2 - 17 April 2006 through 21 April 2006
ER -