Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy

Peng Ji, Yueteng Zhang, Feng Gao, Fangchao Bi, Wei Wang

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

While strategies involving a 2e- transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

Original languageEnglish (US)
Pages (from-to)13079-13084
Number of pages6
JournalChemical Science
Volume11
Issue number48
DOIs
StatePublished - Dec 28 2020

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy'. Together they form a unique fingerprint.

Cite this