Direct imaging of a cold jovian exoplanet in orbit around the sun-like star GJ 504

M. Kuzuhara, M. Tamura, T. Kudo, M. Janson, R. Kandori, T. D. Brandt, C. Thalmann, D. Spiegel, B. Biller, J. Carson, Y. Hori, R. Suzuki, A. Burrows, T. Henning, E. L. Turner, M. W. McElwain, A. Moro-Martín, T. Suenaga, Y. H. Takahashi, J. KwonP. Lucas, L. Abe, W. Brandner, S. Egner, M. Feldt, H. Fujiwara, M. Goto, C. A. Grady, O. Guyon, J. Hashimoto, Y. Hayano, M. Hayashi, S. S. Hayashi, K. W. Hodapp, M. Ishii, M. Iye, G. R. Knapp, T. Matsuo, S. Mayama, S. Miyama, J. I. Morino, J. Nishikawa, T. Nishimura, T. Kotani, N. Kusakabe, T. S. Pyo, E. Serabyn, H. Suto, M. Takami, N. Takato, H. Terada, D. Tomono, M. Watanabe, J. P. Wisniewski, T. Yamada, H. Takami, T. Usuda

Research output: Contribution to journalArticlepeer-review

211 Scopus citations

Abstract

Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J-H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 Myr, GJ 504b has an estimated mass of 4 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ∼30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510 K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

Original languageEnglish (US)
Article number11
JournalAstrophysical Journal
Volume774
Issue number1
DOIs
StatePublished - Sep 1 2013
Externally publishedYes

Keywords

  • planetary systems
  • stars: formation
  • stars: individual (GJ 504)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Direct imaging of a cold jovian exoplanet in orbit around the sun-like star GJ 504'. Together they form a unique fingerprint.

Cite this