TY - JOUR
T1 - Differentiation of quantitative CT imaging phenotypes in asthma versus COPD
AU - Choi, Sanghun
AU - Haghighi, Babak
AU - Choi, Jiwoong
AU - Hoffman, Eric A.
AU - Comellas, Alejandro P.
AU - Newell, John D.
AU - Wenzel, Sally E.
AU - Castro, Mario
AU - Fain, Sean B.
AU - Jarjour, Nizar N.
AU - Schiebler, Mark L.
AU - Barr, R. Graham
AU - Han, Meilan K.
AU - Bleecker, Eugene R.
AU - Cooper, Christopher B.
AU - Couper, David
AU - Hansel, Nadia
AU - Kanner, Richard E.
AU - Kazerooni, Ella A.
AU - Kleerup, Eric A.C.
AU - Martinez, Fernando J.
AU - O'Neal, Wanda K.
AU - Woodruff, Prescott G.
AU - Lin, Ching Long
N1 - Funding Information:
HHSN268200900020C), and supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Pharmaceuticals, Inc; Chiesi Farmaceutici S.p.A; Forest Research Institute, Inc; GlaxoSmithKline; Grifols Therapeutics, Inc; Ikaria, Inc; Nycomed GmbH; Takeda Pharmaceutical Company; Novartis Pharmaceuticals Corporation; ProterixBio; Regeneron Pharmaceuticals, Inc; Sanofi; and Sunovion.
Funding Information:
competing interests EAH is a shareholder in VIDA diagnostics, a company that is commercialising lung image analysis software derived by the University of Iowa lung imaging group. He is also a member of the Siemens CT advisory board. SBF receives grant funding from GE Healthcare.
Funding Information:
contributors Conception and design: SC. Acquisition of data: SC, BH, EAH, SEW, MC, SBF, SBF, NNJ, MLS, RGB., MKH, ERB, CBC, DC, NH, REK, EAK, EACK, FJM, WKO, PGW and C-LL. Analysis and interpretation of data and final approval of the version to be published: all authors. Drafting the article or revising it critically for important intellectual content: SC, JC, EAH, APC, MLS, REK, WKO and C-LL. Funding This study was supported by the NIH grants: U01 HL114494, HL209152; R01HL094315, HL112986, HL69174, HL064368, HL091762, HL069116; S10RR022421; U10 HL109257, HL109168; UL1 RR024153 (CTSI), UL1 TR000448, UL1 TR000427 (CTSA), and by BasicScience Research Program through the National Research Foundation ofKorea (NRF) funded by the Ministry of Education(NRF-2017R1D1A1B03034157). SPIROMICS was supported bycontracts from the NIH/NHLBI (HHSN268200900013C, HHSN268200900014C,HHSN268200900015C, HHSN268200900016C, HHSN268200900017C,HHSN268200900018C, HHSN268200900019C,
Publisher Copyright:
© Author(s) (or their employer(s)) 2017. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
PY - 2017/12
Y1 - 2017/12
N2 - Introduction Quantitative CT (QCT) imaging-based metrics have quantified disease alterations in asthma and chronic obstructive pulmonary disease (COPD), respectively. We seek to characterise the similarity and disparity between these groups using QCT-derived airway and parenchymal metrics. Methods Asthma and COPD subjects (former-smoker status) were selected with a criterion of post-bronchodilator FEV 1 <80%. Healthy non-smokers were included as a control group. Inspiratory and expiratory QCT images of 75 asthmatic, 215 COPD and 94 healthy subjects were evaluated. We compared three segmental variables: airway circularity, normalised wall thickness and normalised hydraulic diameter, indicating heterogeneous airway shape, wall thickening and luminal narrowing, respectively. Using an image registration, we also computed six lobar variables including per cent functional small-airway disease, per cent emphysema, tissue fraction at inspiration, fractional-air-volume change, Jacobian and functional metric characterising anisotropic deformation. Results Compared with healthy subjects, both asthma and COPD subjects demonstrated a decreased airway circularity especially in large and upper lobar airways, and a decreased normalised hydraulic diameter in segmental airways. Besides, COPD subjects had more severe emphysema and small-airway disease, as well as smaller regional tissue fraction and lung deformation, compared with asthmatic subjects. The difference of emphysema, small-airway disease and tissue fraction between asthma and COPD was more prominent in upper and middle lobes. Conclusions Patients with asthma and COPD, with a persistent FEV 1 <80%, demonstrated similar alterations in airway geometry compared with controls, but different degrees of alterations in parenchymal regions. Density-based metrics measured at upper and middle lobes were found to be discriminant variables between patients with asthma and COPD.
AB - Introduction Quantitative CT (QCT) imaging-based metrics have quantified disease alterations in asthma and chronic obstructive pulmonary disease (COPD), respectively. We seek to characterise the similarity and disparity between these groups using QCT-derived airway and parenchymal metrics. Methods Asthma and COPD subjects (former-smoker status) were selected with a criterion of post-bronchodilator FEV 1 <80%. Healthy non-smokers were included as a control group. Inspiratory and expiratory QCT images of 75 asthmatic, 215 COPD and 94 healthy subjects were evaluated. We compared three segmental variables: airway circularity, normalised wall thickness and normalised hydraulic diameter, indicating heterogeneous airway shape, wall thickening and luminal narrowing, respectively. Using an image registration, we also computed six lobar variables including per cent functional small-airway disease, per cent emphysema, tissue fraction at inspiration, fractional-air-volume change, Jacobian and functional metric characterising anisotropic deformation. Results Compared with healthy subjects, both asthma and COPD subjects demonstrated a decreased airway circularity especially in large and upper lobar airways, and a decreased normalised hydraulic diameter in segmental airways. Besides, COPD subjects had more severe emphysema and small-airway disease, as well as smaller regional tissue fraction and lung deformation, compared with asthmatic subjects. The difference of emphysema, small-airway disease and tissue fraction between asthma and COPD was more prominent in upper and middle lobes. Conclusions Patients with asthma and COPD, with a persistent FEV 1 <80%, demonstrated similar alterations in airway geometry compared with controls, but different degrees of alterations in parenchymal regions. Density-based metrics measured at upper and middle lobes were found to be discriminant variables between patients with asthma and COPD.
KW - airway luminal narrowing
KW - emphysema
KW - functional small airway disease
KW - image registration
KW - quantitative computed tomography
UR - http://www.scopus.com/inward/record.url?scp=85059247769&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059247769&partnerID=8YFLogxK
U2 - 10.1136/bmjresp-2017-000252
DO - 10.1136/bmjresp-2017-000252
M3 - Article
AN - SCOPUS:85059247769
SN - 2052-4439
VL - 4
JO - BMJ Open Respiratory Research
JF - BMJ Open Respiratory Research
IS - 1
M1 - e000252
ER -