TY - JOUR
T1 - Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues
AU - Harrell, Evans M.
AU - Hermi, Lotfi
PY - 2008/6/15
Y1 - 2008/6/15
N2 - We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian,Rρ (z) : = under(∑, k) (z - λk)+ρ . Here {λk}k = 1∞ are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ : = max (0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as over(λk, -) : = frac(1, k) ∑ℓ ≤ k λℓ, and on the eigenvalue counting function. For example, we prove that for all domains and all k ≥ j frac(1 + frac(d, 2), 1 + frac(d, 4)),frac(over(λk, -), over(λj, -)) ≤ 2 (frac(1 + frac(d, 4), 1 + frac(d, 2)))1 + frac(2, d) (frac(k, j))frac(2, d) .
AB - We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian,Rρ (z) : = under(∑, k) (z - λk)+ρ . Here {λk}k = 1∞ are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ : = max (0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as over(λk, -) : = frac(1, k) ∑ℓ ≤ k λℓ, and on the eigenvalue counting function. For example, we prove that for all domains and all k ≥ j frac(1 + frac(d, 2), 1 + frac(d, 4)),frac(over(λk, -), over(λj, -)) ≤ 2 (frac(1 + frac(d, 4), 1 + frac(d, 2)))1 + frac(2, d) (frac(k, j))frac(2, d) .
KW - Dirichlet problem
KW - Laplacian
KW - Riesz means
KW - Universal bounds
KW - Weyl law
UR - http://www.scopus.com/inward/record.url?scp=43049110988&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43049110988&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2008.02.016
DO - 10.1016/j.jfa.2008.02.016
M3 - Article
AN - SCOPUS:43049110988
VL - 254
SP - 3173
EP - 3191
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
SN - 0022-1236
IS - 12
ER -