TY - JOUR
T1 - Differential effects of roads and traffic on space use and movements of native forest-dependent and introduced edge-tolerant species
AU - Chen, Hsiang Ling
AU - Koprowski, John L.
N1 - Publisher Copyright:
© 2016 Chen, Koprowski. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Anthropogenic infrastructure such as roads and non-native species are major causes of species endangerment. Understanding animal behavioral responses to roads and traffic provides insight into causes and mechanisms of effects of linear development on wildlife and aids effective mitigation and conservation. We investigated effects of roads and traffic on space use and movements of two forest-dwelling species: endemic, forest-dependent Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis) and introduced, edge-tolerant Abert's squirrels (Sciurus aberti). To assess the effects of roads on space use and movement patterns, we compared the probability that a squirrel home range included roads and random lines in forests, and assessed effects of traffic intensity on rate of road crossing and movement patterns. Red squirrels avoided areas adjacent to roads and rarely crossed roads. In contrast, Abert's squirrels were more likely to include roads in their home ranges compared to random lines in forests. Both red squirrels and Abert's squirrels increased speed when crossing roads, compared to before and after road crossings. Increased hourly traffic volume reduced the rate of road crossings by both species. Behavioral responses of red squirrels to roads and traffic resemble responses to elevated predation risk, including reduced speed near roads and increased tortuosity of movement paths with increased traffic volume. In contrast, Abert's squirrels appeared little affected by roads and traffic with tortuosity of movement paths reduced as distance to roads decreased. We found that species with similar body size category (<1 kg) but different habitat preference and foraging strategy responded to roads differently and demonstrated that behavior and ecology are important when considering effects of roads on wildlife. Our results indicate that roads restricted movements and space use of a native forest-dependent species while creating habitat preferred by an introduced, edge-tolerant species.
AB - Anthropogenic infrastructure such as roads and non-native species are major causes of species endangerment. Understanding animal behavioral responses to roads and traffic provides insight into causes and mechanisms of effects of linear development on wildlife and aids effective mitigation and conservation. We investigated effects of roads and traffic on space use and movements of two forest-dwelling species: endemic, forest-dependent Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis) and introduced, edge-tolerant Abert's squirrels (Sciurus aberti). To assess the effects of roads on space use and movement patterns, we compared the probability that a squirrel home range included roads and random lines in forests, and assessed effects of traffic intensity on rate of road crossing and movement patterns. Red squirrels avoided areas adjacent to roads and rarely crossed roads. In contrast, Abert's squirrels were more likely to include roads in their home ranges compared to random lines in forests. Both red squirrels and Abert's squirrels increased speed when crossing roads, compared to before and after road crossings. Increased hourly traffic volume reduced the rate of road crossings by both species. Behavioral responses of red squirrels to roads and traffic resemble responses to elevated predation risk, including reduced speed near roads and increased tortuosity of movement paths with increased traffic volume. In contrast, Abert's squirrels appeared little affected by roads and traffic with tortuosity of movement paths reduced as distance to roads decreased. We found that species with similar body size category (<1 kg) but different habitat preference and foraging strategy responded to roads differently and demonstrated that behavior and ecology are important when considering effects of roads on wildlife. Our results indicate that roads restricted movements and space use of a native forest-dependent species while creating habitat preferred by an introduced, edge-tolerant species.
UR - http://www.scopus.com/inward/record.url?scp=84958211520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958211520&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0148121
DO - 10.1371/journal.pone.0148121
M3 - Article
C2 - 26821366
AN - SCOPUS:84958211520
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 1
M1 - e0148121
ER -