Differences in N 2 O fluxes and denitrification gene abundance in the wet and dry seasons through soil and plant residue characteristics of tropical tree crops

Caroline Sayuri Nishisaka, Connor Youngerman, Laura K. Meredith, Janaina Braga do Carmo, Acacio Aparecido Navarrete

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The conversion of forest to agricultural soils is a widespread activity in tropical systems, and its link to nitrous oxide (N 2 O) fluxes and nitrogen cycling gene abundance is relevant to understand environmental drivers that may interact with climate change. A current challenge to estimating N 2 O emissions from land use conversion is an incomplete understanding of crop-specific impacts on denitrifier communities and the N 2 O fluxes driven by differences in the above- and below-ground inputs with crop type. To address this knowledge gap in tree crops, we evaluated N 2 O fluxes and denitrification gene abundance and their relationships with soil and plant residue characteristics in citrus and eucalyptus plantations in the field and in soil incubations. We found that the accumulated N 2 O fluxes from soil were lower for the two agricultural field sites than those for their adjacent forest sites in dry and wet seasons. The N 2 O fluxes were higher in the wet season, and this seasonal difference persisted even when the soils collected from both seasons were incubated under the same moisture and temperature conditions in the lab for 30 days. Increased N 2 O fluxes in the wet season were accompanied by an increase in soil nirK and nosZ gene abundance, the dissolved organic carbon (DOC) concentration, and the total soil carbon (C) and nitrogen (N) content. In turn, the abundance of denitrifiers, as indicated by nirK, nirS, and nosZ gene copy numbers, showed a low but significant positive correlation with soil bulk density. Our results suggest that soil moisture, leaf litter, and crop residues influence the seasonal differences in both N 2 O fluxes and abundance of denitrifiers in citrus- and eucalyptus-cultivated soils, likely through effects on soil physicochemical characteristics. These findings highlight the overwhelming role of environmental drivers that can make investigating microbial drivers difficult in the field and open the possibility for a better understanding of N cycling processes in tropical soils based on paired field- and incubation-based experimentation.

Original languageEnglish (US)
Article number11
JournalFrontiers in Environmental Science
Volume7
Issue numberFEB
DOIs
StatePublished - 2019
Externally publishedYes

Keywords

  • Citrus
  • Denitrifiers
  • Eucalyptus
  • Nitrous oxide
  • Tropical soil

ASJC Scopus subject areas

  • Environmental Science(all)

Fingerprint

Dive into the research topics of 'Differences in N 2 O fluxes and denitrification gene abundance in the wet and dry seasons through soil and plant residue characteristics of tropical tree crops'. Together they form a unique fingerprint.

Cite this