TY - JOUR
T1 - Dieudonné; crystals and Wach modules for p-divisible groups
AU - Cais, Bryden
AU - Lau, Eike
N1 - Publisher Copyright:
© 2017 London Mathematical Society.
PY - 2017
Y1 - 2017
N2 - Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonné; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonné; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.
AB - Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonné; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonné; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.
UR - http://www.scopus.com/inward/record.url?scp=85025131021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85025131021&partnerID=8YFLogxK
U2 - 10.1112/plms.12021
DO - 10.1112/plms.12021
M3 - Article
AN - SCOPUS:85025131021
SN - 0024-6115
VL - 114
SP - 733
EP - 763
JO - Proceedings of the London Mathematical Society
JF - Proceedings of the London Mathematical Society
IS - 4
ER -