Development of wireless sensor node hardware for large-area capacitive strain monitoring

Jong Hyun Jeong, Jian Xu, Hongki Jo, Jian Li, Xiangxiong Kong, William Collins, Caroline Bennett, Simon Laflamme

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Conventional resistive-type strain sensing methods have limitations in large-area sensing due to their relatively small size. The soft elastomeric capacitive (SEC) sensor is a capacitance-based stretchable electronic strain sensor, which has shown distinct advantages for mesoscale sensing over conventional strain-based structural health monitoring (SHM) due to its wide surface coverage capability. While recent advances in wireless sensor technologies have provided an attractive alternative to wired and centralized SHM, the capacitive strain sensing methods have not benefitted from the wireless approaches due to the lack of appropriate hardware element. This study develops a wireless sensor board to use the SEC sensor in combination with a wireless sensor network for SHM by addressing key implementation challenges. An alternating current (AC)-based De-Sauty Wheatstone bridge circuit is employed, converting dynamic capacitance variation from the SEC sensor into analog voltage signal. A high-precision bridge balancer and two-step signal amplifiers are implemented to effectively apply for low-level structural strain vibrations. An amplitude modulation-demodulator has been designed to extract the baseband signal (i.e. strain signal) from the carrier signal (i.e. AC excitation for the Wheatstone bridge). And a dual-step shunt calibrator has been proposed to remove the parasitic capacitance effect of lead wires during on-board calibration process. The performances of the sensor board developed in this study have been validated via a series of lab tests, outperforming a conventional wired capacitance measurement system.

Original languageEnglish (US)
Article number015002
JournalSmart Materials and Structures
Issue number1
StatePublished - Jan 2019


  • capacitive strain sensor
  • soft elastomeric capacitor
  • structural health monitoring
  • wireless sensor

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Development of wireless sensor node hardware for large-area capacitive strain monitoring'. Together they form a unique fingerprint.

Cite this