Development of local complexity metrics to quantify the effect of anatomical noise on detectability of lung nodules in chest CT imaging

Justin Solomon, Geoffrey Rubin, Taylor Smith, Brian Harrawood, Kingshuk Roy Choudhury, Ehsan Samei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The purpose of this study was to develop metrics of local anatomical complexity and compare them with detectability of lung nodules in CT. Data were drawn retrospectively from a published perception experiment in which detectability was assessed in cases enriched with virtual nodules (13 radiologists x 157 total nodules = 2041 responses). A local anatomical complexity metric called the distractor index was developed, defined as the Gaussian weighted proportion (i.e., average) of distracting local voxels (50 voxels in-plane, 5 slices). A distracting voxel was classified by thresholding image data that had been selectively filtered to enhance nodule-like features. The distractor index was measured for each nodule location in the nodule-free images. The local pixel standard deviation (STD) was also measured for each nodule. Other confounding factors of search fraction (proportion of lung voxels to total voxels in the given slice) and peripheral distance (defined as the 3D distance of the nodule from the trachea bifurcation) were measured. A generalized linear mixed-effects statistical model (no interaction terms, probit link function, random reader term) was fit to the data to determine the influence of each metric on detectability. In order of decreasing effect size: distractor index, STD, and search fraction all significantly affected detectability (P < 0.001). Distance to the trachea did not have a significant effect (P > 0.05). These data demonstrate that local lung complexity degrades detection of lung nodules and the distractor index could serve as a good surrogate metric to quantify anatomical complexity.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationImage Perception, Observer Performance, and Technology Assessment
EditorsRobert M. Nishikawa, Matthew A. Kupinski
PublisherSPIE
ISBN (Electronic)9781510607170
DOIs
StatePublished - 2017
Externally publishedYes
EventMedical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment - Orlando, United States
Duration: Feb 12 2017Feb 13 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10136
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment
Country/TerritoryUnited States
CityOrlando
Period2/12/172/13/17

Keywords

  • Computed tomography
  • Image quality
  • Lung cancer screening

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Development of local complexity metrics to quantify the effect of anatomical noise on detectability of lung nodules in chest CT imaging'. Together they form a unique fingerprint.

Cite this