Abstract
Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 m3/m3 at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 m3/m3. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Geoscience and Remote Sensing Symposium |
Subtitle of host publication | International Cooperation for Global Awareness, IGARSS 2017 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2539-2542 |
Number of pages | 4 |
ISBN (Electronic) | 9781509049516 |
DOIs | |
State | Published - Dec 1 2017 |
Event | 37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 - Fort Worth, United States Duration: Jul 23 2017 → Jul 28 2017 |
Publication series
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Volume | 2017-July |
Other
Other | 37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 |
---|---|
Country/Territory | United States |
City | Fort Worth |
Period | 7/23/17 → 7/28/17 |
ASJC Scopus subject areas
- Computer Science Applications
- General Earth and Planetary Sciences