Development and implementation of the experimental procedure to examine the response of CFRP composites subjected to a high-intensity pulsed electric field

R. J. Hart, O. I. Zhupanska

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this work, the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field has been studied. A new fully automated experimental setup was developed that allows for real time measurements of the pulsed electric current and voltage on the carbon fiber polymer matrix composite laminates. The experimental setup included a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 millisecond current pulse with an amplitude of up to 2500 A. The entire setup is controlled through a single Agilent VEE Pro 8.5 program via a computer and USB connections. A series of electrical characterization tests were performed on 16-ply IM7/977-2 and 32-ply IM7/977-3 unidirectional and symmetric cross-ply CFRP composites to assess the ability of the composites to withstand application of a pulsed electric current and determine the effects of the lay-up and thickness on the electrical response. It was found that the electrical resistance of specimens decreased with an increase in the electric current magnitude and lay-up and thickness have a significant effect on the electrical resistance. The 16-ply cross-ply specimens exhibited the largest specimen-to specimen variation in the electrical resistance values among all specimens tested. In addition, both unidirectional and symmetric cross-ply 32-ply specimens exhibited less specimen-to-specimen variation in the electrical resistance as compared to the 16-ply unidirectional and symmetric cross-ply specimens. A decrease in the electrical resistance with an increase in an electric current was observed for all specimens, however, a stronger trend was observed for 16-ply specimens. It was also determined that 32-ply laminates are capable to withstand higher electric current without signs of thermal damage compared to the 16-ply laminates.

Original languageEnglish (US)
Title of host publicationProceedings of the American Society for Composites - 30th Technical Conference, ACS 2015
EditorsXinran Xiao, Dahsin Liu, Alfred Loos
PublisherDEStech Publications
ISBN (Electronic)9781605952253
StatePublished - 2015
Externally publishedYes
Event30th Annual Technical Conference of the American Society for Composites, ASC 2015 - East Lansing, United States
Duration: Sep 28 2015Sep 30 2015

Publication series

NameProceedings of the American Society for Composites - 30th Technical Conference, ACS 2015

Conference

Conference30th Annual Technical Conference of the American Society for Composites, ASC 2015
Country/TerritoryUnited States
CityEast Lansing
Period9/28/159/30/15

ASJC Scopus subject areas

  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Development and implementation of the experimental procedure to examine the response of CFRP composites subjected to a high-intensity pulsed electric field'. Together they form a unique fingerprint.

Cite this