Development and evaluation of a field-based high-throughput phenotyping platform

Pedro Andrade-Sanchez, Michael A. Gore, John T. Heun, Kelly R. Thorp, A. Elizabete Carmo-Silva, Andrew N. French, Michael E. Salvucci, Jeffrey W. White

Research output: Contribution to journalArticlepeer-review

276 Scopus citations


Physiological and developmental traits that vary over time are difficult to phenotype under relevant growing conditions. In this light, we developed a novel system for phenotyping dynamic traits in the field. System performance was evaluated on 25 Pima cotton (Gossypium barbadense L.) cultivars grown in 2011 at Maricopa, Arizona. Field-grown plants were irrigated under well watered and water-limited conditions, with measurements taken at different times on 3 days in July and August. The system carried four sets of sensors to measure canopy height, reflectance and temperature simultaneously on four adjacent rows, enabling the collection of phenotypic data at a rate of 0.84ha h-1. Measurements of canopy height, normalised difference vegetation index and temperature all showed large differences among cultivars and expected interactions of cultivars with water regime and time of day. Broad-sense heritabilities (H2)were highest for canopy height (H 2=0.86-0.96), followed by the more environmentally sensitive normalised difference vegetation index (H2=0.28-0.90) and temperature (H2=0.01-0.90) traits. We also found a strong agreement (r 2=0.35-0.82) between values obtained by the system, and values from aerial imagery and manual phenotyping approaches. Taken together, these results confirmed the ability of the phenotyping system to measure multiple traits rapidly and accurately. Journal compilation

Original languageEnglish (US)
Pages (from-to)68-79
Number of pages12
JournalFunctional Plant Biology
Issue number1
StatePublished - 2014
Externally publishedYes


  • Cotton
  • Genetics
  • Gossypium barbadense
  • Phenomics
  • Proximal sensing

ASJC Scopus subject areas

  • Agronomy and Crop Science
  • Plant Science


Dive into the research topics of 'Development and evaluation of a field-based high-throughput phenotyping platform'. Together they form a unique fingerprint.

Cite this