TY - JOUR
T1 - Determining Band-Edge Energies and Morphology-Dependent Stability of Formamidinium Lead Perovskite Films Using Spectroelectrochemistry and Photoelectron Spectroscopy
AU - Shallcross, R. Clayton
AU - Zheng, Yilong
AU - Saavedra, S. Scott
AU - Armstrong, Neal R.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/4/5
Y1 - 2017/4/5
N2 - We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO2) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca. −4.0 eV versus vacuum on both ITO and TiO2 electrodes. Since electron injection occurs from the electrode to the perovskite, the CBM is uniquely probed at the buried metal oxide/FA-PVSK interface, which is otherwise difficult to characterize for thick films. UPS characterization of the same FA-PVSK thin films provide complementary near-surface measurements of the VBM and electrode-dependent energetics. In addition to energetics, controlled electrochemical charge injection experiments in the nonsolvent electrolyte reveal decomposition pathways that are related to morphology-dependent heterogeneity in the electrochemical and chemical stability of these films. X-ray photoelectron spectroscopy of these electrochemically treated FA-PVSK films shows changes in the average near-surface stoichiometry, which suggests that lead-rich crystal termination planes are the most likely sites for electron trapping and thus nanometer-scale perovskite decomposition.
AB - We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO2) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca. −4.0 eV versus vacuum on both ITO and TiO2 electrodes. Since electron injection occurs from the electrode to the perovskite, the CBM is uniquely probed at the buried metal oxide/FA-PVSK interface, which is otherwise difficult to characterize for thick films. UPS characterization of the same FA-PVSK thin films provide complementary near-surface measurements of the VBM and electrode-dependent energetics. In addition to energetics, controlled electrochemical charge injection experiments in the nonsolvent electrolyte reveal decomposition pathways that are related to morphology-dependent heterogeneity in the electrochemical and chemical stability of these films. X-ray photoelectron spectroscopy of these electrochemically treated FA-PVSK films shows changes in the average near-surface stoichiometry, which suggests that lead-rich crystal termination planes are the most likely sites for electron trapping and thus nanometer-scale perovskite decomposition.
UR - http://www.scopus.com/inward/record.url?scp=85017101890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017101890&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b00516
DO - 10.1021/jacs.7b00516
M3 - Article
C2 - 28292175
AN - SCOPUS:85017101890
SN - 0002-7863
VL - 139
SP - 4866
EP - 4878
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 13
ER -