Detecting, localizing and recovering kinematics of textured animals

Deva Ramanan, D. A. Forsyth, Kobus Barnard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

We develop and demonstrate an object recognition system capable of accurately detecting, localizing, and recovering the kinematic configuration of textured animals in real images. We build a deformation model of shape automatically from videos of animals and an appearance model of texture from a labeled collection of animal images, and combine the two models automatically. We develop a simple texture descriptor that outperforms the state of the art. We test our animal models on two datasets; images taken by professional photographers from the Corel collection, and assorted images from the web returned by Google. We demonstrate quite good performance on both datasets. Comparing our results with simple baselines, we show that for the Google set, we can recognize objects from a collection demonstrably hard for object recognition.

Original languageEnglish (US)
Title of host publicationProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
PublisherIEEE Computer Society
Pages635-642
Number of pages8
ISBN (Print)0769523722, 9780769523729
DOIs
StatePublished - 2005
Event2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 - San Diego, CA, United States
Duration: Jun 20 2005Jun 25 2005

Publication series

NameProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
VolumeII

Other

Other2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
Country/TerritoryUnited States
CitySan Diego, CA
Period6/20/056/25/05

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Detecting, localizing and recovering kinematics of textured animals'. Together they form a unique fingerprint.

Cite this