Design rules for minimizing voltage losses in high-efficiency organic solar cells

Deping Qian, Zilong Zheng, Huifeng Yao, Wolfgang Tress, Thomas R. Hopper, Shula Chen, Sunsun Li, Jing Liu, Shangshang Chen, Jiangbin Zhang, Xiao Ke Liu, Bowei Gao, Liangqi Ouyang, Yingzhi Jin, Galia Pozina, Irina A. Buyanova, Weimin M. Chen, Olle Inganäs, Veaceslav Coropceanu, Jean Luc BredasHe Yan, Jianhui Hou, Fengling Zhang, Artem A. Bakulin, Feng Gao

Research output: Contribution to journalArticlepeer-review

455 Scopus citations

Abstract

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor–acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor–acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

Original languageEnglish (US)
Pages (from-to)703-709
Number of pages7
JournalNature materials
Volume17
Issue number8
DOIs
StatePublished - Aug 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Design rules for minimizing voltage losses in high-efficiency organic solar cells'. Together they form a unique fingerprint.

Cite this