Abstract
The phase-induced amplitude apodization complex mask coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and the tip-tilt sensitivity of the coronagraph. As a result, unlike classic phase-induced amplitude apodization (PIAA), the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Original language | English (US) |
---|---|
Article number | 011018 |
Journal | Journal of Astronomical Telescopes, Instruments, and Systems |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2016 |
Keywords
- Exoplanets
- coronagraphy
- optical design
- phase-induced amplitude apodization
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Control and Systems Engineering
- Instrumentation
- Astronomy and Astrophysics
- Mechanical Engineering
- Space and Planetary Science