TY - GEN
T1 - Design and Development of a Robotic Space Station for Near Earth Asteroid Detection
AU - Raj, Athip Thirupathi
AU - Bouskela, Adrien
AU - Thangavelautham, Jekan
N1 - Publisher Copyright:
© 2024, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Near-Earth Asteroid (NEA) detection is crucial due to the potential threats and opportunities these celestial bodies present. Identifying and tracking NEAs is vital for planetary defense. While catastrophic asteroid impacts are rare, their severe consequences necessitate early detection. This allows scientists to assess threats and develop strategies for deflection or mitigation, protecting life and property on Earth. Additionally, NEA detection is essential for scientific exploration and space resource utilization. These asteroids offer insights into the early solar system and planetary formation, enhancing our understanding of life’s origins. Some NEAs contain valuable resources like metals, water, and minerals, opening opportunities for space mining and supporting sustainable space exploration. NEA detection also aids space situational awareness, preventing collisions with satellites, space probes, and the International Space Station (ISS), thus improving space traffic management. This global effort fosters international collaboration among space agencies, observatories, and research institutions, enhancing our understanding of NEAs and promoting broader space exploration cooperation. Information from NEA detection informs policy decisions on planetary defense, space exploration, and resource utilization, guiding governments and space agencies in resource allocation and policy formulation. We propose a space-based observation station for NEA detection, incorporating key components for optimal performance. This includes a network of telescopes strategically positioned for comprehensive night sky coverage, advanced automated systems, and machine learning algorithms for real-time data analysis. Wide-field survey capabilities and space-based telescopes overcome atmospheric limitations, enhancing detection sensitivity and accuracy. Operating across multiple wavelengths, including infrared and visible light, the station employs spectroscopy for detailed analysis of detected asteroids. The station features robust real-time data processing and automated alert systems to promptly notify authorities and the scientific community about newly detected NEAs. Establishing collaborative networks with international observatories and space agencies fosters data sharing and coordination, amplifying global NEA detection efforts. Public outreach programs and citizen science initiatives raise awareness and encourage public participation in space-related activities. Continuous monitoring capabilities and redundancy measures ensure uninterrupted NEA detection. This comprehensive system not only enhances planetary defense but also advances scientific exploration and space-related technologies. Deploying this concept in Low Earth Orbit (LEO) allows for a focused examination of system functionality and performance. Initial LEO deployment serves as a precursor for potential expansions into Cislunar and Deep space domains, addressing unique challenges and ensuring the autonomous observation station meets immediate NEA detection demands while laying the groundwork for broader applications.
AB - Near-Earth Asteroid (NEA) detection is crucial due to the potential threats and opportunities these celestial bodies present. Identifying and tracking NEAs is vital for planetary defense. While catastrophic asteroid impacts are rare, their severe consequences necessitate early detection. This allows scientists to assess threats and develop strategies for deflection or mitigation, protecting life and property on Earth. Additionally, NEA detection is essential for scientific exploration and space resource utilization. These asteroids offer insights into the early solar system and planetary formation, enhancing our understanding of life’s origins. Some NEAs contain valuable resources like metals, water, and minerals, opening opportunities for space mining and supporting sustainable space exploration. NEA detection also aids space situational awareness, preventing collisions with satellites, space probes, and the International Space Station (ISS), thus improving space traffic management. This global effort fosters international collaboration among space agencies, observatories, and research institutions, enhancing our understanding of NEAs and promoting broader space exploration cooperation. Information from NEA detection informs policy decisions on planetary defense, space exploration, and resource utilization, guiding governments and space agencies in resource allocation and policy formulation. We propose a space-based observation station for NEA detection, incorporating key components for optimal performance. This includes a network of telescopes strategically positioned for comprehensive night sky coverage, advanced automated systems, and machine learning algorithms for real-time data analysis. Wide-field survey capabilities and space-based telescopes overcome atmospheric limitations, enhancing detection sensitivity and accuracy. Operating across multiple wavelengths, including infrared and visible light, the station employs spectroscopy for detailed analysis of detected asteroids. The station features robust real-time data processing and automated alert systems to promptly notify authorities and the scientific community about newly detected NEAs. Establishing collaborative networks with international observatories and space agencies fosters data sharing and coordination, amplifying global NEA detection efforts. Public outreach programs and citizen science initiatives raise awareness and encourage public participation in space-related activities. Continuous monitoring capabilities and redundancy measures ensure uninterrupted NEA detection. This comprehensive system not only enhances planetary defense but also advances scientific exploration and space-related technologies. Deploying this concept in Low Earth Orbit (LEO) allows for a focused examination of system functionality and performance. Initial LEO deployment serves as a precursor for potential expansions into Cislunar and Deep space domains, addressing unique challenges and ensuring the autonomous observation station meets immediate NEA detection demands while laying the groundwork for broader applications.
UR - http://www.scopus.com/inward/record.url?scp=85204233103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85204233103&partnerID=8YFLogxK
U2 - 10.2514/6.2024-4848
DO - 10.2514/6.2024-4848
M3 - Conference contribution
AN - SCOPUS:85204233103
SN - 9781624107160
T3 - AIAA Aviation Forum and ASCEND, 2024
BT - AIAA Aviation Forum and ASCEND, 2024
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aviation Forum and ASCEND, 2024
Y2 - 29 July 2024 through 2 August 2024
ER -