Defect chemistry and phase equilibria of (La1-xCa x)FeO3-δ thermodynamic modeling

Sung Hoon Lee, Venkateswara Rao Manga, Michael F. Carolan, Zi Kui Liu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Thermodynamics of defects in the (LaxCa1-x)FeO 3-δ perovskite is modeled by means of the CALPHAD approach. In this phase, the A-sites are occupied by La+3 and Ca+2, and Fe in the B-site is known to exist in +2, +3, and +4 oxidation states depending on the oxygen vacancy concentration. Therefore, the ionic sublattice model: (La+3, Ca+2)(Fe+2, Fe+3, Fe +4)(O-2, Va)3 is used to describe the phase, and the model parameters are evaluated from experimental oxygen nonstoichiometry and phase equilibria data. With the Fe+2 and Fe+4 treated as the major species in the B-site, the calculated phase diagrams are in good agreement with the experimentally reported phase equilibria data. The concentration of various defects in (LaxCa1-x)FeO 3-δ as a function of oxygen partial pressure and temperature are calculated at different concentrations of Ca. At high oxygen partial pressures, Fe+4 is predicted to be dominant while Fe+2 is dominant at low oxygen partial pressures.

Original languageEnglish (US)
Pages (from-to)F1103-F1108
JournalJournal of the Electrochemical Society
Volume160
Issue number10
DOIs
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Defect chemistry and phase equilibria of (La1-xCa x)FeO3-δ thermodynamic modeling'. Together they form a unique fingerprint.

Cite this