Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke

The STIR and VISTA Imaging investigators

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Background: Accessible tools to efficiently detect and segment diffusion abnormalities in acute strokes are highly anticipated by the clinical and research communities. Methods: We developed a tool with deep learning networks trained and tested on a large dataset of 2,348 clinical diffusion weighted MRIs of patients with acute and sub-acute ischemic strokes, and further tested for generalization on 280 MRIs of an external dataset (STIR). Results: Our proposed model outperforms generic networks and DeepMedic, particularly in small lesions, with lower false positive rate, balanced precision and sensitivity, and robustness to data perturbs (e.g., artefacts, low resolution, technical heterogeneity). The agreement with human delineation rivals the inter-evaluator agreement; the automated lesion quantification of volume and contrast has virtually total agreement with human quantification. Conclusion: Our tool is fast, public, accessible to non-experts, with minimal computational requirements, to detect and segment lesions via a single command line. Therefore, it fulfills the conditions to perform large scale, reliable and reproducible clinical and translational research.

Original languageEnglish (US)
Article number61
JournalCommunications Medicine
Volume1
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Internal Medicine
  • Epidemiology
  • Medicine (miscellaneous)
  • Assessment and Diagnosis

Fingerprint

Dive into the research topics of 'Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke'. Together they form a unique fingerprint.

Cite this