TY - JOUR
T1 - Cytotoxic Constituents of Aspergillus terreus from the Rhizosphere of Opuntia versicolor of the Sonoran Desert
AU - Wijeratne, E. M.Kithsiri
AU - Turbyville, Thomas J.
AU - Zhang, Zhongge
AU - Bigelow, Donna
AU - Pierson, Leland S.
AU - VanEtten, Hans D.
AU - Whitesell, Luke
AU - Canfield, Louise M.
AU - Gunatilaka, A. A.Leslie
PY - 2003/12
Y1 - 2003/12
N2 - A novel cyclopentenedione, asterredione (1), two new terrecyclic acid A derivatives, (+)-5(6)-dihydro-6-methoxyterrecyclic acid A (2) and (+)-5(6)-dihydro-6-hydroxyterrecyclic acid A (3), and five known compounds, (+)-terrecyclic acid A (4), (-)-quadrone (5), betulinan A (6), asterriquinone D (7), and asterriquinone C-1 (8), were isolated from Aspergillus terreus occurring in the rhizosphere of Opuntia versicolor, using bioassay-guided fractionation. Acid-catalyzed reaction of 2 under mild conditions afforded 4, whereas under harsh conditions 2 yielded 5 and (-)-isoquadrone (9). Catalytic hydrogenation and methylation of 4 afforded 5(6)-dihydro-terrecyclic acid A (10) and (+)-terrecyclic acid A methyl ester (11), respectively. The structures of 1-11 were elucidated by spectroscopic methods. All compounds were evaluated for cytotoxicity in a panel of three sentinel cancer cell lines, NCI-H460 (non-small cell lung cancer), MCF-7 (breast cancer), and SF-268 (CNS glioma), and were found to be moderately active. Cell cycle analysis of 2, 4, and 5 using the NCI-H460 cell line indicated that 4 is capable of disrupting the cell cycle through an apparent arrest to progression at the G1 and G 2/M phases in this p53 competent cell line. A pathway for the biosynthetic origin of asterredione (1) from asterriquinone D (7) is proposed.
AB - A novel cyclopentenedione, asterredione (1), two new terrecyclic acid A derivatives, (+)-5(6)-dihydro-6-methoxyterrecyclic acid A (2) and (+)-5(6)-dihydro-6-hydroxyterrecyclic acid A (3), and five known compounds, (+)-terrecyclic acid A (4), (-)-quadrone (5), betulinan A (6), asterriquinone D (7), and asterriquinone C-1 (8), were isolated from Aspergillus terreus occurring in the rhizosphere of Opuntia versicolor, using bioassay-guided fractionation. Acid-catalyzed reaction of 2 under mild conditions afforded 4, whereas under harsh conditions 2 yielded 5 and (-)-isoquadrone (9). Catalytic hydrogenation and methylation of 4 afforded 5(6)-dihydro-terrecyclic acid A (10) and (+)-terrecyclic acid A methyl ester (11), respectively. The structures of 1-11 were elucidated by spectroscopic methods. All compounds were evaluated for cytotoxicity in a panel of three sentinel cancer cell lines, NCI-H460 (non-small cell lung cancer), MCF-7 (breast cancer), and SF-268 (CNS glioma), and were found to be moderately active. Cell cycle analysis of 2, 4, and 5 using the NCI-H460 cell line indicated that 4 is capable of disrupting the cell cycle through an apparent arrest to progression at the G1 and G 2/M phases in this p53 competent cell line. A pathway for the biosynthetic origin of asterredione (1) from asterriquinone D (7) is proposed.
UR - http://www.scopus.com/inward/record.url?scp=0347656928&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0347656928&partnerID=8YFLogxK
U2 - 10.1021/np030266u
DO - 10.1021/np030266u
M3 - Article
C2 - 14695798
AN - SCOPUS:0347656928
VL - 66
SP - 1567
EP - 1573
JO - Journal of Natural Products
JF - Journal of Natural Products
SN - 0163-3864
IS - 12
ER -