TY - JOUR
T1 - Cyclization phenomena in the sol-gel polymerization of α,ω- bis(triethoxysilyl)alkanes and incorporation of the cyclic structures into network silsesquioxane polymers
AU - Loy, Douglas A.
AU - Carpenter, Joseph P.
AU - Alam, Todd M.
AU - Shaltout, Raef
AU - Dorhout, Peter K.
AU - Greaves, John
AU - Small, James H.
AU - Shea, Kenneth J.
PY - 1999/6/16
Y1 - 1999/6/16
N2 - Intramolecular cyclizations during acid-catalyzed sol-gel polymerizations of α,ω-bis(triethoxysilyl)alkanes substantially lengthen gel times for monomers with ethylene (1), propylene (2), and butylene (3) bridging groups. These cyclization reactions were found, using mass spectrometry and 29Si NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six- and seven-membered disilsesquioxane rings. 1,2-Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic dimer (5) that is composed of two annelated seven-membered rings. Under the same conditions, 1,3-bis(triethoxysilyl)propane (2), 1,4bis(triethoxysilyl)butane (3), and Z-1,4-bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six- and seven- membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dimers 8, 9, and 12. With NaOH as polymerization catalyst, these cyclic silsesquioxanes readily reacted to afford gels that were shown by CP MAS 29Si NMR and infrared spectroscopies to retain some cyclic structures. Comparison of the porosity and microstructure of xerogels prepared from the cyclic monomers 6 and 7 with those of gels prepared directly from their acyclic precursors 2 and 3 indicates that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species cannot be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.
AB - Intramolecular cyclizations during acid-catalyzed sol-gel polymerizations of α,ω-bis(triethoxysilyl)alkanes substantially lengthen gel times for monomers with ethylene (1), propylene (2), and butylene (3) bridging groups. These cyclization reactions were found, using mass spectrometry and 29Si NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six- and seven-membered disilsesquioxane rings. 1,2-Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic dimer (5) that is composed of two annelated seven-membered rings. Under the same conditions, 1,3-bis(triethoxysilyl)propane (2), 1,4bis(triethoxysilyl)butane (3), and Z-1,4-bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six- and seven- membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dimers 8, 9, and 12. With NaOH as polymerization catalyst, these cyclic silsesquioxanes readily reacted to afford gels that were shown by CP MAS 29Si NMR and infrared spectroscopies to retain some cyclic structures. Comparison of the porosity and microstructure of xerogels prepared from the cyclic monomers 6 and 7 with those of gels prepared directly from their acyclic precursors 2 and 3 indicates that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species cannot be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.
UR - http://www.scopus.com/inward/record.url?scp=0033575046&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033575046&partnerID=8YFLogxK
U2 - 10.1021/ja982751v
DO - 10.1021/ja982751v
M3 - Article
AN - SCOPUS:0033575046
SN - 0002-7863
VL - 121
SP - 5413
EP - 5425
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 23
ER -