Cultivating efficiency: high-throughput growth analysis of anaerobic bacteria in compact microplate readers

Oona L.O. Snoeyenbos-West, Christina R. Guerrero, Makaela Valencia, Paul Carini

Research output: Contribution to journalArticlepeer-review

Abstract

Anaerobic microbes play crucial roles in environmental processes, industry, and human health. Traditional methods for monitoring the growth of anaerobes, including plate counts or subsampling broth cultures for optical density measurements, are time and resource-intensive. The advent of microplate readers revolutionized bacterial growth studies by enabling high-throughput and real-time monitoring of microbial growth kinetics. Yet, their use in anaerobic microbiology has remained limited. Here, we present a workflow for using small-footprint microplate readers and the Growthcurver R package to analyze the kinetic growth metrics of anaerobic bacteria. We benchmarked the small-footprint Cerillo Stratus microplate reader against a BioTek Synergy HTX microplate reader in aerobic conditions using Escherichia coli DSM 28618 cultures. The growth rates and carrying capacities obtained from the two readers were statistically indistinguishable. However, the area under the logistic curve was significantly higher in cultures monitored by the Stratus reader. We used the Stratus to quantify the growth responses of anaerobically grown E. coli and Clostridium bolteae DSM 29485 to different doses of the toxin sodium arsenite. The growth of E. coli and C. bolteae was sensitive to arsenite doses of 1.3 µM and 0.4 µM, respectively. Complete inhibition of growth was achieved at 38 µM arsenite for C. bolteae and 338 µM in E. coli. These results show that the Stratus performs similarly to a leading brand of microplate reader and can be reliably used in anaerobic conditions. We discuss the advantages of the small format microplate readers and our experiences with the Stratus. IMPORTANCE We present a workflow that facilitates the production and analysis of growth curves for anaerobic microbes using small-footprint microplate readers and an R script. This workflow is a cost and space-effective solution to most high-throughput solutions for collecting growth data from anaerobic microbes. This technology can be used for applications where high throughput would advance discovery, including microbial isolation, bioprospecting, co-culturing, host-microbe interactions, and drug/ toxin-microbial interactions.

Original languageEnglish (US)
JournalMicrobiology Spectrum
Volume12
Issue number5
DOIs
StatePublished - May 2024

Keywords

  • anaerobic bacteria
  • arsenite
  • compact microplate readers
  • growth response
  • high throughput
  • microbial growth

ASJC Scopus subject areas

  • Physiology
  • Ecology
  • General Immunology and Microbiology
  • Genetics
  • Microbiology (medical)
  • Cell Biology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Cultivating efficiency: high-throughput growth analysis of anaerobic bacteria in compact microplate readers'. Together they form a unique fingerprint.

Cite this