TY - JOUR
T1 - COVID-19 Time of Intubation Mortality Evaluation (C-TIME)
T2 - A system for predicting mortality of patients with COVID-19 pneumonia at the time they require mechanical ventilation
AU - Raschke, Robert A.
AU - Rangan, Pooja
AU - Agarwal, Sumit
AU - Uppalapu, Suresh
AU - Sher, Nehan
AU - Curry, Steven C.
AU - Heise, C. William
N1 - Publisher Copyright:
© 2022 Raschke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/7
Y1 - 2022/7
N2 - Background An accurate system to predict mortality in patients requiring intubation for COVID-19 could help to inform consent, frame family expectations and assist end-of-life decisions. Research objective To develop and validate a mortality prediction system called C-TIME (COVID-19 Time of Intubation Mortality Evaluation) using variables available before intubation, determine its discriminant accuracy, and compare it to acute physiology and chronic health evaluation (APACHE IVa) and sequential organ failure assessment (SOFA). Methods A retrospective cohort was set in 18 medical-surgical ICUs, enrolling consecutive adults, positive by SARS-CoV 2 RNA by reverse transcriptase polymerase chain reaction or positive rapid antigen test, and undergoing endotracheal intubation. All were followed until hospital discharge or death. The combined outcome was hospital mortality or terminal extubation with hospice discharge. Twenty-five clinical and laboratory variables available 48 hours prior to intubation were entered into multiple logistic regression (MLR) and the resulting model was used to predict mortality of validation cohort patients. Area under the receiver operating curve (AUROC) was calculated for C-TIME, APACHE IVa and SOFA. Results The median age of the 2,440 study patients was 66 years; 61.6 percent were men, and 50.5 percent were Hispanic, Native American or African American. Age, gender, COPD, minimum mean arterial pressure, Glasgow Coma scale score, and PaO2/FiO2 ratio, maximum creatinine and bilirubin, receiving factor Xa inhibitors, days receiving non-invasive respiratory support and days receiving corticosteroids prior to intubation were significantly associated with the outcome variable. The validation cohort comprised 1,179 patients. C-TIME had the highest AUROC of 0.75 (95%CI 0.72–0.79), vs 0.67 (0.64–0.71) and 0.59 (0.55–0.62) for APACHE and SOFA, respectively (Chi2 P<0.0001). Conclusions C-TIME is the only mortality prediction score specifically developed and validated for COVID-19 patients who require mechanical ventilation. It has acceptable discriminant accuracy and goodness-of-fit to assist decision-making just prior to intubation. The C-TIME mortality prediction calculator can be freely accessed on-line at https://phoenixmed.arizona. edu/ctime.
AB - Background An accurate system to predict mortality in patients requiring intubation for COVID-19 could help to inform consent, frame family expectations and assist end-of-life decisions. Research objective To develop and validate a mortality prediction system called C-TIME (COVID-19 Time of Intubation Mortality Evaluation) using variables available before intubation, determine its discriminant accuracy, and compare it to acute physiology and chronic health evaluation (APACHE IVa) and sequential organ failure assessment (SOFA). Methods A retrospective cohort was set in 18 medical-surgical ICUs, enrolling consecutive adults, positive by SARS-CoV 2 RNA by reverse transcriptase polymerase chain reaction or positive rapid antigen test, and undergoing endotracheal intubation. All were followed until hospital discharge or death. The combined outcome was hospital mortality or terminal extubation with hospice discharge. Twenty-five clinical and laboratory variables available 48 hours prior to intubation were entered into multiple logistic regression (MLR) and the resulting model was used to predict mortality of validation cohort patients. Area under the receiver operating curve (AUROC) was calculated for C-TIME, APACHE IVa and SOFA. Results The median age of the 2,440 study patients was 66 years; 61.6 percent were men, and 50.5 percent were Hispanic, Native American or African American. Age, gender, COPD, minimum mean arterial pressure, Glasgow Coma scale score, and PaO2/FiO2 ratio, maximum creatinine and bilirubin, receiving factor Xa inhibitors, days receiving non-invasive respiratory support and days receiving corticosteroids prior to intubation were significantly associated with the outcome variable. The validation cohort comprised 1,179 patients. C-TIME had the highest AUROC of 0.75 (95%CI 0.72–0.79), vs 0.67 (0.64–0.71) and 0.59 (0.55–0.62) for APACHE and SOFA, respectively (Chi2 P<0.0001). Conclusions C-TIME is the only mortality prediction score specifically developed and validated for COVID-19 patients who require mechanical ventilation. It has acceptable discriminant accuracy and goodness-of-fit to assist decision-making just prior to intubation. The C-TIME mortality prediction calculator can be freely accessed on-line at https://phoenixmed.arizona. edu/ctime.
UR - http://www.scopus.com/inward/record.url?scp=85133718393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133718393&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0270193
DO - 10.1371/journal.pone.0270193
M3 - Article
C2 - 35793312
AN - SCOPUS:85133718393
SN - 1932-6203
VL - 17
JO - PloS one
JF - PloS one
IS - 7 July
M1 - e0270193
ER -