Abstract
The transport and fate of many contaminants in subsurface systems can be influenced by several coupled processes, such as nonlinear, rate-limited sorption and biodegradation. We investigated the transport in soil of a model organic compound, 2,4-dichlorophenoxyacetic acid (2,4-D), influenced by nonlinear, rate-limited sorption and biodegradation. Miscible displacement and batch sorption experiments were conducted using a wide range of solute concentrations to investigate the impact of concentration-dependent behavior on transport. The sorption isotherm was approximately linear at a low concentration, and nonlinear over the extended range of concentrations. Results from the transport experiments, with the fitted N values approaching I at low input concentrations, were consistent with the batch sorption study. Nonlinear sorption significantly influenced the position of the breakthrough curves because of concentration-dependent retardation. However, although both nonlinear and rate-limited sorption influenced the shape of the breakthrough curves, the impact of rate-limited sorption was greater. The effective travel time of 2,4-D transport is influenced by synergistic interactions between sorption and biodegradation. For example, the sequential rightward shift of the breakthrough curves with decreasing input concentration, due to nonlinear sorption of 2,4-D, is enhanced by biodegradation.
Original language | English (US) |
---|---|
Pages (from-to) | 1673-1680 |
Number of pages | 8 |
Journal | Environmental Toxicology and Chemistry |
Volume | 17 |
Issue number | 9 |
DOIs | |
State | Published - 1998 |
Keywords
- Biodegradation
- Coupled effects
- Sorption
- Transport
ASJC Scopus subject areas
- Environmental Chemistry
- Health, Toxicology and Mutagenesis