Abstract
The use of luminous red galaxies as cosmic chronometers provides us with an indispensable method of measuring the universal expansion rate H(z) in a model-independent way. Unlike many probes of the cosmological history, this approach does not rely on integrated quantities, such as the luminosity distance, and therefore does not require the pre-assumption of any particular model, which may bias subsequent interpretations of the data. We employ three statistical tools . the Akaike, Kullback and Bayes Information Criteria (AIC, KIC and BIC) . to compare the δ cold dark matter (δCDM) model and the Rh = ct Universe with the currently available measurements of H(z), and show that the Rh = ct Universe is favoured by these model selection criteria. The parameters in each model are individually optimized by maximum likelihood estimation. The Rh =ct Universe fits the data with a reduced χ2 dof = 0.745 for a Hubble constant H0 = 63.2 ± 1.6 km s-1 Mpc-1, and H0 is the sole parameter in this model. By comparison, the optimal δCDM model, which has three free parameters (including H0 = 68.9 ± 3.3 km s.1 Mpc.1, σm = 0.32, and a dark-energy equation of state pde =-ρde), fits the H(z) data with a reduced χ2 dof = 0.777. With these χ2 dof values, the AIC yields a likelihood of .82 per cent that the distance.redshift relation of the Rh = ct Universe is closer to the correct cosmology, than is the case for δCDM. If the alternative BIC criterion is used, the respective Bayesian posterior probabilities are 91.2 per cent (Rh = ct) versus 8.8 per cent (δCDM). Using the concordance δCDM parameter values, rather than those obtained by fitting δCDM to the cosmic chronometer data, would further disfavour δCDM.
Original language | English (US) |
---|---|
Pages (from-to) | 2669-2675 |
Number of pages | 7 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 432 |
Issue number | 4 |
DOIs | |
State | Published - Oct 2013 |
Keywords
- Abundances - galaxies
- Evolution - cosmological parameters - cosmology
- Methods
- Observations - cosmology
- Statistical - galaxies
- Theory
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science