TY - JOUR
T1 - Correction
T2 - Tanguturi et al. Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021, 26, 6693
AU - Tanguturi, Parthasaradhireddy
AU - Pathak, Vibha
AU - Zhang, Sixue
AU - Moukha-Chafiq, Omar
AU - Augelli-Szafran, Corinne E.
AU - Streicher, John M.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/2
Y1 - 2022/3/2
N2 - In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m-3 Kg-1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc’s method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.
AB - In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m-3 Kg-1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc’s method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.
KW - Bandgap analysis
KW - Optical property
KW - Sn-PPHs metal complex
KW - UV-Vis
KW - XRD and FTIR analyses
UR - http://www.scopus.com/inward/record.url?scp=85127084734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127084734&partnerID=8YFLogxK
U2 - 10.3390/molecules27061969
DO - 10.3390/molecules27061969
M3 - Comment/debate
C2 - 35335399
AN - SCOPUS:85127084734
SN - 1420-3049
VL - 27
JO - Molecules
JF - Molecules
IS - 6
M1 - 1969
ER -