TY - GEN
T1 - Coordination and control of multiple climbing robots in transport of heavy loads through extreme terrain
AU - Kalita, Himangshu
AU - Morad, Steven
AU - Thangavelautham, Jekan
N1 - Publisher Copyright:
© 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2019
Y1 - 2019
N2 - The discovery of ice deposits in the permanently shadowed craters of the lunar North and South Pole Moon presents an important opportunity for In-Situ Resource Utilization. These ice deposits maybe the source for sustaining a lunar base or for enabling an interplanetary refueling station. These ice deposits also preserve a unique record of the geology and environment of their hosts, both in terms of impact history and the supply of volatile compounds, and so are of immense scientific interest. To date, these ice deposits have been studied indirectly and by remote active radar, but they need to be analyzed in-situ by robotic systems that can study the depths of the deposits, their purity and composition. However, these shadowed craters never see sunlight and are one of the coldest places in the solar system. NASA JPL proposed use of solar reflectors mounted on crater rims to project sunlight into the crater depths for use by ground robots. The solar reflectors would heat the crater base and vehicles positioned at the base sufficiently to survive the cold-temperatures. Our approach analyzes part of the logistics of the approach, with teams of robots climbing up and down to the crater to access the ice deposits. The mission will require robots to climb down extreme environments and carry large structures, including instruments and communication devices.
AB - The discovery of ice deposits in the permanently shadowed craters of the lunar North and South Pole Moon presents an important opportunity for In-Situ Resource Utilization. These ice deposits maybe the source for sustaining a lunar base or for enabling an interplanetary refueling station. These ice deposits also preserve a unique record of the geology and environment of their hosts, both in terms of impact history and the supply of volatile compounds, and so are of immense scientific interest. To date, these ice deposits have been studied indirectly and by remote active radar, but they need to be analyzed in-situ by robotic systems that can study the depths of the deposits, their purity and composition. However, these shadowed craters never see sunlight and are one of the coldest places in the solar system. NASA JPL proposed use of solar reflectors mounted on crater rims to project sunlight into the crater depths for use by ground robots. The solar reflectors would heat the crater base and vehicles positioned at the base sufficiently to survive the cold-temperatures. Our approach analyzes part of the logistics of the approach, with teams of robots climbing up and down to the crater to access the ice deposits. The mission will require robots to climb down extreme environments and carry large structures, including instruments and communication devices.
UR - http://www.scopus.com/inward/record.url?scp=85083943329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083943329&partnerID=8YFLogxK
U2 - 10.2514/6.2019-0870
DO - 10.2514/6.2019-0870
M3 - Conference contribution
AN - SCOPUS:85083943329
SN - 9781624105784
T3 - AIAA Scitech 2019 Forum
BT - AIAA Scitech 2019 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2019
Y2 - 7 January 2019 through 11 January 2019
ER -