TY - JOUR
T1 - Convergence of forelimb and hindlimb natural pendular period in baboons (Papio cynocephalus) and its implication for the evolution of primate quadrupedalism
AU - Raichlen, D. A.
PY - 2004/6
Y1 - 2004/6
N2 - The patterns of muscle mass distribution along the lengths of limbs may have important effects on the mechanics and energetics of quadrupedalism. Specifically, Myers and Steudel (J. Morphol. 234 (1997) 183) have shown that fore- and hindlimb Natural Pendular Periods (NPPs) may affect quadrupedal kinematics and must converge to reduce locomotor energetic costs. This study quantifies patterns of limb mass distribution in a live sample of Papio cynocephalus using limb inertial properties (mass, center of mass, mass moment of inertia, and radius of gyration). These inertial properties are calculated using a geometric modeling technique similar to that of Crompton et al. (Am. J. phys. Anthrop. 99 (1996) 547). The inertial properties in Papio are compared to those of Canis from Myers and Steudel (J. Morphol. 234 (1997) 183). The Papio sample has convergent fore- and hindlimb NPPs. Additionally. these limb NPPs are relatively large compared to those of Canis due to the relatively distally distributed limb mass in the Papio sample (relatively large limb masses, relatively distal centers of mass and radii of gyration, and relatively large limb mass moments of inertia). This relatively distal limb mass appears related to the grasping abilities of their hands and feet. Causal links are explored between limb shape adaptations for grasping hands and feet and the kinematics of primate quadrupedalism. In particular, if primates in general follow Papio's limb mass distribution pattern, then relatively large limb NPPs may lead to the relatively low stride frequencies already documented for primates. The kinematics of primate quadrupedalism appears to have been strongly influenced by both selection for grasping hands and feet and selection for reduced locomotor energetic costs.
AB - The patterns of muscle mass distribution along the lengths of limbs may have important effects on the mechanics and energetics of quadrupedalism. Specifically, Myers and Steudel (J. Morphol. 234 (1997) 183) have shown that fore- and hindlimb Natural Pendular Periods (NPPs) may affect quadrupedal kinematics and must converge to reduce locomotor energetic costs. This study quantifies patterns of limb mass distribution in a live sample of Papio cynocephalus using limb inertial properties (mass, center of mass, mass moment of inertia, and radius of gyration). These inertial properties are calculated using a geometric modeling technique similar to that of Crompton et al. (Am. J. phys. Anthrop. 99 (1996) 547). The inertial properties in Papio are compared to those of Canis from Myers and Steudel (J. Morphol. 234 (1997) 183). The Papio sample has convergent fore- and hindlimb NPPs. Additionally. these limb NPPs are relatively large compared to those of Canis due to the relatively distally distributed limb mass in the Papio sample (relatively large limb masses, relatively distal centers of mass and radii of gyration, and relatively large limb mass moments of inertia). This relatively distal limb mass appears related to the grasping abilities of their hands and feet. Causal links are explored between limb shape adaptations for grasping hands and feet and the kinematics of primate quadrupedalism. In particular, if primates in general follow Papio's limb mass distribution pattern, then relatively large limb NPPs may lead to the relatively low stride frequencies already documented for primates. The kinematics of primate quadrupedalism appears to have been strongly influenced by both selection for grasping hands and feet and selection for reduced locomotor energetic costs.
KW - Biomechanics
KW - Inertial properties
KW - Natural pendular period
KW - Quadrupedalism
UR - http://www.scopus.com/inward/record.url?scp=3042717222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042717222&partnerID=8YFLogxK
U2 - 10.1016/j.jhevol.2004.04.002
DO - 10.1016/j.jhevol.2004.04.002
M3 - Article
C2 - 15183672
AN - SCOPUS:3042717222
SN - 0047-2484
VL - 46
SP - 719
EP - 738
JO - Journal of human evolution
JF - Journal of human evolution
IS - 6
ER -