TY - JOUR
T1 - Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate
T2 - Implications for Europa
AU - Mitri, Giuseppe
AU - Showman, Adam P.
N1 - Funding Information:
We thank Paul Geissler, Lijie Han, Gabriel Tobie, and Hirdy Miyamoto. We are grateful to Hauke Hussmann and William B. Moore. This project was supported by the Italian Space Agency (ASI) and the NASA PG&G program through Grant NNG04GI46G to A.P.S.
PY - 2005/10
Y1 - 2005/10
N2 - We investigate the response of conductive and convective ice shells on Europa to variations of heat flux and interior tidal-heating rate. We present numerical simulations of convection in Europa's ice shell with Newtonian, temperature-dependent viscosity and tidal heating. Modest variations in the heat flux supplied to the base of a convective ice shell, ΔF, can cause large variations of the ice-shell thickness Δδ. In contrast, for a conductive ice shell, large ΔF involves relatively small Δδ. We demonstrate that, for a fluid with temperature-dependent viscosity, the heat flux undergoes a finite-amplitude jump at the critical Rayleigh number Racr. This jump implies that, for a range of heat fluxes relevant to Europa, two equilibrium states-corresponding to a thin, conductive shell and a thick, convective shell-exist for a given heat flux. We show that, as a result, modest variations in heat flux near the critical Rayleigh number can force the ice shell to switch between the thin, conductive and thick, convective configurations over a ∼107-year interval, with thickness changes of up to ∼ 10 - 30 km. Depending on the orbital and thermal history, such switches might occur repeatedly. However, existing evolution models based on parameterized-convection schemes have to date not allowed these transitions to occur. Rapid thickening of the ice shell would cause radial expansion of Europa, which could produce extensional tectonic features such as fractures or bands. Furthermore, based on interpretations for how features such as chaos and ridges are formed, several authors have suggested that Europa's ice shell has recently undergone changes in thickness. Our model provides a mechanism for such changes to occur.
AB - We investigate the response of conductive and convective ice shells on Europa to variations of heat flux and interior tidal-heating rate. We present numerical simulations of convection in Europa's ice shell with Newtonian, temperature-dependent viscosity and tidal heating. Modest variations in the heat flux supplied to the base of a convective ice shell, ΔF, can cause large variations of the ice-shell thickness Δδ. In contrast, for a conductive ice shell, large ΔF involves relatively small Δδ. We demonstrate that, for a fluid with temperature-dependent viscosity, the heat flux undergoes a finite-amplitude jump at the critical Rayleigh number Racr. This jump implies that, for a range of heat fluxes relevant to Europa, two equilibrium states-corresponding to a thin, conductive shell and a thick, convective shell-exist for a given heat flux. We show that, as a result, modest variations in heat flux near the critical Rayleigh number can force the ice shell to switch between the thin, conductive and thick, convective configurations over a ∼107-year interval, with thickness changes of up to ∼ 10 - 30 km. Depending on the orbital and thermal history, such switches might occur repeatedly. However, existing evolution models based on parameterized-convection schemes have to date not allowed these transitions to occur. Rapid thickening of the ice shell would cause radial expansion of Europa, which could produce extensional tectonic features such as fractures or bands. Furthermore, based on interpretations for how features such as chaos and ridges are formed, several authors have suggested that Europa's ice shell has recently undergone changes in thickness. Our model provides a mechanism for such changes to occur.
KW - Europa
KW - Geophysics
KW - Ices
KW - Interiors
KW - Satellites of Jupiter
KW - Thermal convection
KW - Thermal histories
UR - http://www.scopus.com/inward/record.url?scp=26444447473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26444447473&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2005.03.019
DO - 10.1016/j.icarus.2005.03.019
M3 - Article
AN - SCOPUS:26444447473
SN - 0019-1035
VL - 177
SP - 447
EP - 460
JO - Icarus
JF - Icarus
IS - 2
ER -