Continuous contact force models for impact analysis in multibody systems

Hamid M. Lankarani, Parviz E. Nikravesh

Research output: Contribution to journalArticlepeer-review

503 Scopus citations


One method for predicting the impact response of a multibody system is based on the assumption that the impacting bodies undergo local deformations and the contact forces are continuous. In a continuous analysis, the integration of the system equations of motion is carried out during the period of contact; therefore, a model for evaluating the contact forces is required. In this paper, two such contact force models are presented, both Hertzian in nature and based upon the direct-central impact of two solid particles. At low impact velocities, the energy dissipation during impact can be represented by material damping. A model is constructed based on the general trend of the Hertz contact law in conjuction with a hysteresis damping function. The unknown parameters are determined in terms of a given coefficient of restitution and the impact velocity. When local plasticity effects are the dominant factor accounting for the dissipation of energy at high impact velocities, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are again evaluated. The two particle models are generalized to an impact analysis between two bodies of a multibody system.

Original languageEnglish (US)
Pages (from-to)193-207
Number of pages15
JournalNonlinear Dynamics
Issue number2
StatePublished - Mar 1994


  • Contact models
  • impact analysis
  • multibody systems

ASJC Scopus subject areas

  • Mechanical Engineering
  • Aerospace Engineering
  • Ocean Engineering
  • Applied Mathematics
  • Electrical and Electronic Engineering
  • Control and Systems Engineering


Dive into the research topics of 'Continuous contact force models for impact analysis in multibody systems'. Together they form a unique fingerprint.

Cite this