Continental scale structuring of forest and soil diversity via functional traits

Vanessa Buzzard, Sean T. Michaletz, Ye Deng, Zhili He, Daliang Ning, Lina Shen, Qichao Tu, Joy D. Van Nostrand, James W. Voordeckers, Jianjun Wang, Michael D. Weiser, Michael Kaspari, Robert B. Waide, Jizhong Zhou, Brian J. Enquist

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Trait-based ecology claims to offer a mechanistic approach for explaining the drivers that structure biological diversity and predicting the responses of species, trophic interactions and ecosystems to environmental change. However, support for this claim is lacking across broad taxonomic groups. A framework for defining ecosystem processes in terms of the functional traits of their constituent taxa across large spatial scales is needed. Here, we provide a comprehensive assessment of the linkages between climate, plant traits and soil microbial traits at many sites spanning a broad latitudinal temperature gradient from tropical to subalpine forests. Our results show that temperature drives coordinated shifts in most plant and soil bacterial traits but these relationships are not observed for most fungal traits. Shifts in plant traits are mechanistically associated with soil bacterial functional traits related to carbon (C), nitrogen (N) and phosphorus (P) cycling, indicating that microbial processes are tightly linked to variation in plant traits that influence rates of ecosystem decomposition and nutrient cycling. Our results are consistent with hypotheses that diversity gradients reflect shifts in phenotypic optima signifying local temperature adaptation mediated by soil nutrient availability and metabolism. They underscore the importance of temperature in structuring the functional diversity of plants and soil microbes in forest ecosystems and how this is coupled to biogeochemical processes via functional traits.

Original languageEnglish (US)
Pages (from-to)1298-1308
Number of pages11
JournalNature Ecology and Evolution
Volume3
Issue number9
DOIs
StatePublished - Sep 1 2019

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint

Dive into the research topics of 'Continental scale structuring of forest and soil diversity via functional traits'. Together they form a unique fingerprint.

Cite this