TY - JOUR
T1 - Contextual inhibition of fatty acid synthesis by metformin involves glucose-derived acetyl-CoA and cholesterol in pancreatic tumor cells
AU - Cantoria, Mary Jo
AU - Boros, László G.
AU - Meuillet, Emmanuelle J.
N1 - Funding Information:
Acknowledgments We thank F. Tracy Lagunero for metabolite extraction/processing, Péter Csaba Bíró for assisting in the cell proliferation studies, Maria Csikos, Ana Geri, Csaba Geri for blinded spectra processing, Ferenc Nádudvari for preparing the EZTopolome visual data review panels and Dale Chenoweth of Austin, Texas, for co-editing the manuscript. This work was supported by the Hirshberg Foundation for Pancreatic Cancer Research to EJM, by the National
Funding Information:
Needs Fellow (NNF) training grant from the USDA [Grant 2010-38420-20369] for MJC, by the UCLA Center for Excellence in Pancreatic Diseases of the NCI [Grant 1 P01 AT003960-01A1] and the UCLA Clinical and Translational Science Institute [Grant UL1TR000124] to LGB.
PY - 2014/2
Y1 - 2014/2
N2 - Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis in pancreatic cancer cells. Wild type K-ras BxPC-3 and HOM: GGT(Gly) → TGT(Cys) K12 transformed MIA PaCa-2 adenocarcinoma cells were cultured in the presence of [1,2-13C2]-d-glucose as the single tracer for 24 h and treated with either 100 μM metformin (MET), 1 mM cholesteryl hemisuccinate (CHS), or the dose matching combination of MET and CHS (CHS-MET). Wild type K-ras cells used 11.43 % (SD = ±0.32) of new acetyl-CoA for palmitate synthesis that was derived from glucose, while K-ras mutated MIA PaCa-2 cells shuttled less than half as much, 5.47 % [SD = ±0.28 (P < 0.01)] of this precursor towards FAS. Cholesterol treatment almost doubled glucose-derived acetyl-CoA enrichment to 9.54 % (SD = ±0.24) and elevated the fraction of new palmitate synthesis by over 2.5-fold in MIA PaCa-2 cells; whereby 100 μM MET treatment resulted in a 28 % inhibitory effect on FAS. Therefore, acetyl-CoA shuttling towards its carboxylase, from thiolase, produces contextual synthetic inhibition by metformin of new palmitate production. Thereby, metformin, mutated K-ras and high cholesterol each contributes to limit new fatty acid and potentially cell membrane synthesis, demonstrating a previously unknown mechanism for inhibiting cancer growth during the metabolic syndrome.
AB - Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis in pancreatic cancer cells. Wild type K-ras BxPC-3 and HOM: GGT(Gly) → TGT(Cys) K12 transformed MIA PaCa-2 adenocarcinoma cells were cultured in the presence of [1,2-13C2]-d-glucose as the single tracer for 24 h and treated with either 100 μM metformin (MET), 1 mM cholesteryl hemisuccinate (CHS), or the dose matching combination of MET and CHS (CHS-MET). Wild type K-ras cells used 11.43 % (SD = ±0.32) of new acetyl-CoA for palmitate synthesis that was derived from glucose, while K-ras mutated MIA PaCa-2 cells shuttled less than half as much, 5.47 % [SD = ±0.28 (P < 0.01)] of this precursor towards FAS. Cholesterol treatment almost doubled glucose-derived acetyl-CoA enrichment to 9.54 % (SD = ±0.24) and elevated the fraction of new palmitate synthesis by over 2.5-fold in MIA PaCa-2 cells; whereby 100 μM MET treatment resulted in a 28 % inhibitory effect on FAS. Therefore, acetyl-CoA shuttling towards its carboxylase, from thiolase, produces contextual synthetic inhibition by metformin of new palmitate production. Thereby, metformin, mutated K-ras and high cholesterol each contributes to limit new fatty acid and potentially cell membrane synthesis, demonstrating a previously unknown mechanism for inhibiting cancer growth during the metabolic syndrome.
KW - C glucose-derived acetyl-CoA
KW - Cholesterol
KW - Contextual drug effect
KW - System-wide association study
KW - TTFAS
KW - Targeted tracer fate association study
UR - http://www.scopus.com/inward/record.url?scp=84892484894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892484894&partnerID=8YFLogxK
U2 - 10.1007/s11306-013-0555-4
DO - 10.1007/s11306-013-0555-4
M3 - Article
AN - SCOPUS:84892484894
SN - 1573-3882
VL - 10
SP - 91
EP - 104
JO - Metabolomics
JF - Metabolomics
IS - 1
ER -