Construction of aeroelastic stability boundaries using a multi-fidelity approach

Christoph Dribusch, Samy Missoum

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Two of the challenges in the construction of aeroelastic stability boundaries are the high cost of simulations and the binary nature (stable/unstable) of the problem. This paper introduces a multi-fldelity approach for the construction of a stability boundary using a Support Vector Machine classifier. The boundary is refined using an adaptive sampling scheme which automatically selects the level of fldelity (low or high) needed for each sample. One of the key features of the approach stems from the iterative definition of the region of the space where high-fldelity samples are needed. The proposed method brings a major improvement to a published work on the topic.1 The efficiency of the approach is tested on two analytical problems of several dimensions before it is applied to the construction of the stability boundary including both flutter and divergence of a simplified parameterized wing.

Original languageEnglish (US)
Title of host publication53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012
StatePublished - 2012
Event53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012 - Honolulu, HI, United States
Duration: Apr 23 2012Apr 26 2012

Publication series

Name53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012

Other

Other53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012
Country/TerritoryUnited States
CityHonolulu, HI
Period4/23/124/26/12

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering
  • General Materials Science
  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'Construction of aeroelastic stability boundaries using a multi-fidelity approach'. Together they form a unique fingerprint.

Cite this