Constraining the Early History of Mercury and Its Core Dynamo by Studying the Crustal Magnetic Field

Joana S. Oliveira, Lon L. Hood, Benoit Langlais

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Low-altitude magnetic field data acquired by MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) over a small portion of Mercury's surface revealed weak crustal magnetic field signatures. Here we study the crustal magnetic anomalies associated with impact craters on Mercury. We assume that the sources of these anomalies consist of impact melt, enriched in impactor iron. We assume that the subsurfaces of Mercury's impact craters have cooled in the presence of a constant global magnetic field, thus becoming thermoremanently magnetized. We invert for the crustal magnetization direction within five craters using a unidirectional magnetization model which assumes that the melt impact rocks recorded the constant core magnetic field present when the crater was formed and that the crater's magnetization has not been altered since its formation. From the best fitting magnetization direction we then obtain the corresponding north magnetic paleopole position assuming a centered core dipolar field. Results show that all five magnetic paleopoles lie in the southern hemisphere but are not required to be located near the present-day magnetic pole, which lies near the south geographic pole. Accounting for the uncertainties, we show that our results all agree in a common small region that excludes the current magnetic pole. This strongly suggests that the dynamo has evolved with time. Our results represent valuable information for understanding the evolution of Mercury and emphasize the importance of including more anomaly analyses to complete and refine our conclusions.

Original languageEnglish (US)
Pages (from-to)2382-2396
Number of pages15
JournalJournal of Geophysical Research: Planets
Volume124
Issue number9
DOIs
StatePublished - Sep 1 2019
Externally publishedYes

Keywords

  • Mercury
  • Parker's method
  • magnetic anomalies

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Constraining the Early History of Mercury and Its Core Dynamo by Studying the Crustal Magnetic Field'. Together they form a unique fingerprint.

Cite this