Abstract
The aim or this paper is to propose a simple yet realistic model for the mechanical behavior of geologic materials such as concrete and rock. The effect of structural changes in such materials is addressed and incorporated in the theory through a tensor form of a damage variable. It is shown that formation of damage is responsible for the softening in strength observed in experiments, for the degradation of the elastic shear modulus, and for induced anisotropy. A generalized plasticity model is incorporated for the so-called topical or continuum part of the behavior, whereas the damage part is represented by the so-called stress-relieved behavior. The parameters required to define the model are identified and determined from multiaxial testing of a concrete. The predictions are compared with observed behavior for a number of stress paths. The model shows very good agreement with the observed response.
Original language | English (US) |
---|---|
Pages (from-to) | 733-750 |
Number of pages | 18 |
Journal | International Journal of Solids and Structures |
Volume | 23 |
Issue number | 6 |
DOIs | |
State | Published - 1987 |
Externally published | Yes |
ASJC Scopus subject areas
- Modeling and Simulation
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Applied Mathematics