Confirmation and refutation of very luminous galaxies in the early Universe

Pablo Arrabal Haro, Mark Dickinson, Steven L. Finkelstein, Jeyhan S. Kartaltepe, Callum T. Donnan, Denis Burgarella, Adam C. Carnall, Fergus Cullen, James S. Dunlop, Vital Fernández, Seiji Fujimoto, Intae Jung, Melanie Krips, Rebecca L. Larson, Casey Papovich, Pablo G. Pérez-González, Ricardo O. Amorín, Micaela B. Bagley, Véronique Buat, Caitlin M. CaseyKatherine Chworowsky, Seth H. Cohen, Henry C. Ferguson, Mauro Giavalisco, Marc Huertas-Company, Taylor A. Hutchison, Dale D. Kocevski, Anton M. Koekemoer, Ray A. Lucas, Derek J. McLeod, Ross J. McLure, Norbert Pirzkal, Lise Marie Seillé, Jonathan R. Trump, Benjamin J. Weiner, Stephen M. Wilkins, Jorge A. Zavala

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

During the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium 1–3. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits 4–9. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors. Spectroscopic measurements are required to validate these sources and to reliably quantify physical properties that can constrain galaxy formation models and cosmology 10. Here we present JWST spectroscopy that confirms redshifts for two very luminous galaxies with z > 11, and also demonstrates that another candidate with suggested z ≈ 16 instead has z = 4.9, with an unusual combination of nebular line emission and dust reddening that mimics the colours expected for much more distant objects. These results reinforce evidence for the early, rapid formation of remarkably luminous galaxies while also highlighting the necessity of spectroscopic verification. The large abundance of bright, early galaxies may indicate shortcomings in current galaxy formation models or deviations from physical properties (such as the stellar initial mass function) that are generally believed to hold at later times.

Original languageEnglish (US)
Pages (from-to)707-711
Number of pages5
JournalNature
Volume622
Issue number7984
DOIs
StatePublished - Oct 26 2023

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Confirmation and refutation of very luminous galaxies in the early Universe'. Together they form a unique fingerprint.

Cite this