CondiDiag1.0: A flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)

Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, Ross Dixon

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Numerical models used in weather and climate prediction take into account a comprehensive set of atmospheric processes (i.e., phenomena) such as the resolved and unresolved fluid dynamics, radiative transfer, cloud and aerosol life cycles, and mass or energy exchanges with the Earth's surface. In order to identify model deficiencies and improve predictive skills, it is important to obtain process-level understanding of the interactions between different processes. Conditional sampling and budget analysis are powerful tools for process-oriented model evaluation, but they often require tedious ad hoc coding and large amounts of instantaneous model output, resulting in inefficient use of human and computing resources. This paper presents an online diagnostic tool that addresses this challenge by monitoring model variables in a generic manner as they evolve within the time integration cycle. The tool is convenient to use. It allows users to select sampling conditions and specify monitored variables at run time. Both the evolving values of the model variables and their increments caused by different atmospheric processes can be monitored and archived. Online calculation of vertical integrals is also supported. Multiple sampling conditions can be monitored in a single simulation in combination with unconditional sampling. The paper explains in detail the design and implementation of the tool in the Energy Exascale Earth System Model (E3SM) version 1. The usage is demonstrated through three examples: a global budget analysis of dust aerosol mass concentration, a composite analysis of sea salt emission and its dependency on surface wind speed, and a conditionally sampled relative humidity budget. The tool is expected to be easily portable to closely related atmospheric models that use the same or similar data structures and time integration methods.

Original languageEnglish (US)
Pages (from-to)3205-3231
Number of pages27
JournalGeoscientific Model Development
Volume15
Issue number8
DOIs
StatePublished - Apr 19 2022
Externally publishedYes

ASJC Scopus subject areas

  • Modeling and Simulation
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'CondiDiag1.0: A flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)'. Together they form a unique fingerprint.

Cite this